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Let,  be congruent regular polyhedra in R3. Let  denote a rigid motion of R3,
that is, () = Φ+ where Φ is a 3×3 rotation matrix and  is a translation 3-vector.
The polyhedra, () are said to touch if∩() 6= ∅ but int()∩int(()) = ∅.
Alternatively, we may think of Φ moving toward  in the direction  , stopping

precisely when the two polyhedra collide.

Let us sample the space 3 of matrices Φ according to the uniform distribution

(Haar measure, normalized to 1). The space of vectors  is slightly harder to describe.

Let

 −Φ = { −Φ :  ∈  and  ∈ }
be the Minkowski sum of  and the reflected image −Φ of Φ. Another way to
characterize  − Φ is as the convex hull of all pairwise sums of vertices of  and

−Φ. Clearly

 ∈ bd( −Φ) if and only if the polyhedra  () touch.

Thus we sample the space bd(−Φ) uniformly (area measure), which is complicated
only by the intricate variety of possible faces of  − Φ.

With independent Φ and  as described, it is clear that

P {collision is edge-to-edge}  0

P {collision is vertex-to-face or face-to-vertex}  0
and that no other types of collisions occur with positive likelihood. What is unclear

is the relative magnitude of these two probabilities.

Answering a question asked by Firey, McMullen [1, 2] proved that the edge-to-

edge collisions are strictly more likely than vertex-to-face collisions. In the case of

two cubes (cubical dice), the exact values of the probabilities are
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More generally, we have [3]
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where 0 = 1 is the Euler characteristic of ,
1
2
1 is the mean width  (to be defined

shortly), 22 is the surface area  and 3 is the volume. For the unit cube, it follows

that  = 32 and  = 6.

In the case of two regular tetrahedra (tetrahedral dice), we have
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In the case of two regular octahedra (octahedral dice), we have
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These specific numerical results are apparently new. For tetrahedra, verification by

simulation appears in [4], using [5, 6]. The touching is vertex-to-face or face-to-vertex

if and only if  lies in a triangular face of  − Φ. (All other faces of  − Φ are

parallelograms.) Hence it suffices to assess the ratio of surface area of triangles only

to surface area of the whole. The cases of two cubes or of two octahedra are more

difficult.

0.1. Mean Width. Let  be a convex body in R3. In earlier essays [7, 8, 9], the
words “width” or “breadth” were used to denote the minimum distance between all

pairs of parallel -supporting planes. Here, we instead take the mean of all such

distances, calling this . The phrase mean width [10, 11] is used, as well as mean

breadth [12] and mean caliper diameter [13, 14].

Closed-form expressions for  exist when  is a convex polyhedron. Numerical

confirmation of such formulas is possible via quadratic programming (since the opti-

mization constraints are linear) [4].
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0.2. Intrinsic Volumes. Let  be a rectangular parallelepiped in R3 of dimen-
sions 1, 2, 3. It is well-known that

3( ) = 123

2( ) = 12 + 13 + 23 =
1
2


1( ) = 1 + 2 + 3 = 2

are the elementary symmetric polynomials in three variables. In R, there are 

such intrinsic volumes, corresponding to the  elementary symmetric polynomials

[11]. Little is known about higher-dimensional intrinsic volumes and the isoperimetric

inequalities among them. Limiting approximation arguments enable us to compute

() for arbitrary convex . Additionally, let 0() = 1. Hadwiger’s famous

theorem [3] gives that 0, 1, . . . ,  are a basis of the space of all additive continuous

measures that are invariant under rigid motions.

0.3. Acknowledgement. Rolf Schneider generously proposed the method under-

lying the tetrahedral simulation. More about mean width computations for convex

polyhedra is found in [15, 16, 17, 18, 19, 20], for certain other convex bodies in

[21, 22, 23], and a specific non-convex body in [24].
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