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Fix a real number   0. Let  = {1 } if  6= 1; otherwise  = {1} may simply
be written as 1. A subset  ⊆ R is said to avoid  if k− k ∈  for all   ∈ .

For example, the union of open balls of radius 12 with centers in (2Z) avoids the
distance 1. If instead the balls have centers in (3Z), then their union avoids {1 2}.
It is natural to ask about the “largest possible”  that avoids . Let  denote

the ball of radius  with center 0. Assuming  is Lebesgue measurable, its density

() = limsup
→∞

( ∩ )
()

quantifies the asymptotic proportion of R occupied by . We wish to know

(R) = sup {() :  is measurable and avoids } 

The shortage of information regarding (R) is surprising. Until further notice,

let  = 2 and  = 1 for simplicity [1, 2, 3].

On the one hand, the number of Z2 points within  is ∼  2 [4], hence the

number of (2Z)2 points within  is ∼ (4)2. Each open disk in our example has
area 4 and  has area  

2, thus 1(R2) ≥ 16 ≈ 0196. It turns out we can do
better by arranging the disks with centers according to an equilateral triangle lattice,

giving 1(R2) ≥ 
¡
8
√
3
¢ ≈ 0227. An additional improvement (replacing six

portions of each circular circumference by linear segments) gives 1(R2) ≥ 0229365.
This is the best lower bound currently known [5, 6].

On the other hand, a configuration called the Moser spindle implies that1(R2) ≤
27 ≈ 0286 [7, 8]. Székely [9, 10] improved the upper bound to 1243 ≈ 0279. The
best result currently known is 1(R2) ≤ 0258795 via linear programming techniques
[11, 12]. Erdős’ conjecture that 1(R2)  14 seems out of reach.
Sets avoiding 1 have been studied by combinatorialists because of their association

with the measurable chromatic number of the plane. What is the minimum number

of colors (R
2) required to color all points of R2 so that any two points at distance

1 receive distinct colors and so that points receiving the same color form Lebesgue

measurable sets? It is known only that 5 ≤ (R
2) ≤ 7 [13].
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Let us now consider the case  = 2 and  = 2. The number of (3Z)2 points
within  is ∼ (9)2. Each open disk in our example has area 4 and  has

area  2, thus 12(R2) ≥ 36 ≈ 0087. Better lower bounds can surely be found,
akin to before. We also know that 12(R2) ≤ 29 ≈ 0222 [9]. No one appears to
have pursued this case further.

A more interesting problem is to allow  to vary, in an effort to determine

inf
0

1(R2)

One line of research gave1
√
3(R

2) ≤ 211 ≈ 0182 [9], now improved to1
√
3(R

2) ≤
0170213 [11]. Another direction gives 1(R2) ≤ 0141577, where

 =
12

11
= 18309303282

is a ratio of the first two positive zeroes of the Bessel function 1 [14, 15]. There is

no indication [11] that  is necessarily an optimal choice for .

For  = 3 and  = 1, a configuration called the Moser-Raiskii spindle implies that

1(R3) ≤ 314 ≈ 0214 [8]. Székely [16] improved the upper bound to 737 ≈ 0189;
this was further diminished to 316 = 01875 in [13]. The best result currently known

is 1(R3) ≤ 0165609 [11].
For  = 4 and  = 1, an early result1(R4) ≤ 16125 = 0128 [13] was superseded

later by 0112937 [11] and more recently improved to 0100062 [17]. Upper bounds on

1(R) are now known up to  = 24; lower bounds seem to be relatively neglected.

Let us return finally to a lower bound, mentioned in [13]:

inf
0

1(R2) ≥
µ

1

(R2)

¶2
≥
µ
1

7

¶2
=
1

49

and proved in [9]. The gap between 149 ≈ 002 and ≈ 014 deserves to be bridged!
We are hopeful that someone will accept this challenge.

0.1. Addendum. Let  be a Lebesgue surface measurable subset of the unit

sphere in R3 with the property that no two vectors in  are orthogonal. Let 

denote the largest possible area of such sets , normalized by 4. It is known [18]

that 02928    0313 and the upper bound is (again) the outcome of linear

programming techniques.
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