Distance-Avoiding Sets in the Plane

Steven Finch

March 18, 2014
Fix a real number $d>0$. Let $D=\{1, d\}$ if $d \neq 1$; otherwise $D=\{1\}$ may simply be written as 1 . A subset $S \subseteq \mathbb{R}^{n}$ is said to avoid D if $\|x-y\| \notin D$ for all $x, y \in S$. For example, the union of open balls of radius $1 / 2$ with centers in $(2 \mathbb{Z})^{n}$ avoids the distance 1. If instead the balls have centers in $(3 \mathbb{Z})^{n}$, then their union avoids $\{1,2\}$.

It is natural to ask about the "largest possible" S that avoids D. Let B_{R} denote the ball of radius R with center 0 . Assuming S is Lebesgue measurable, its density

$$
\delta(S)=\limsup _{R \rightarrow \infty} \frac{\mu\left(B_{R} \cap S\right)}{\mu\left(B_{R}\right)}
$$

quantifies the asymptotic proportion of \mathbb{R}^{n} occupied by S. We wish to know

$$
m_{D}\left(\mathbb{R}^{n}\right)=\sup \{\delta(S): S \text { is measurable and avoids } D\}
$$

The shortage of information regarding $m_{D}\left(\mathbb{R}^{n}\right)$ is surprising. Until further notice, let $n=2$ and $d=1$ for simplicity $[1,2,3]$.

On the one hand, the number of \mathbb{Z}^{2} points within B_{R} is $\sim \pi R^{2}$ [4], hence the number of $(2 \mathbb{Z})^{2}$ points within B_{R} is $\sim(\pi / 4) R^{2}$. Each open disk in our example has area $\pi / 4$ and B_{R} has area πR^{2}, thus $m_{1}\left(\mathbb{R}^{2}\right) \geq \pi / 16 \approx 0.196$. It turns out we can do better by arranging the disks with centers according to an equilateral triangle lattice, giving $m_{1}\left(\mathbb{R}^{2}\right) \geq \pi /(8 \sqrt{3}) \approx 0.227$. An additional improvement (replacing six portions of each circular circumference by linear segments) gives $m_{1}\left(\mathbb{R}^{2}\right) \geq 0.229365$. This is the best lower bound currently known [5, 6].

On the other hand, a configuration called the Moser spindle implies that $m_{1}\left(\mathbb{R}^{2}\right) \leq$ $2 / 7 \approx 0.286[7,8]$. Székely [9,10$]$ improved the upper bound to $12 / 43 \approx 0.279$. The best result currently known is $m_{1}\left(\mathbb{R}^{2}\right) \leq 0.258795$ via linear programming techniques [11, 12]. Erdős' conjecture that $m_{1}\left(\mathbb{R}^{2}\right)<1 / 4$ seems out of reach.

Sets avoiding 1 have been studied by combinatorialists because of their association with the measurable chromatic number of the plane. What is the minimum number of colors $\chi_{m}\left(\mathbb{R}^{2}\right)$ required to color all points of \mathbb{R}^{2} so that any two points at distance 1 receive distinct colors and so that points receiving the same color form Lebesgue measurable sets? It is known only that $5 \leq \chi_{m}\left(\mathbb{R}^{2}\right) \leq 7[13]$.

[^0]Let us now consider the case $n=2$ and $d=2$. The number of $(3 \mathbb{Z})^{2}$ points within B_{R} is $\sim(\pi / 9) R^{2}$. Each open disk in our example has area $\pi / 4$ and B_{R} has area πR^{2}, thus $m_{1,2}\left(\mathbb{R}^{2}\right) \geq \pi / 36 \approx 0.087$. Better lower bounds can surely be found, akin to before. We also know that $m_{1,2}\left(\mathbb{R}^{2}\right) \leq 2 / 9 \approx 0.222[9]$. No one appears to have pursued this case further.

A more interesting problem is to allow d to vary, in an effort to determine

$$
\inf _{d>0} m_{1, d}\left(\mathbb{R}^{2}\right)
$$

One line of research gave $m_{1, \sqrt{3}}\left(\mathbb{R}^{2}\right) \leq 2 / 11 \approx 0.182$ [9], now improved to $m_{1, \sqrt{3}}\left(\mathbb{R}^{2}\right) \leq$ 0.170213 [11]. Another direction gives $m_{1, c}\left(\mathbb{R}^{2}\right) \leq 0.141577$, where

$$
c=\frac{j_{1,2}}{j_{1,1}}=1.8309303282 \ldots
$$

is a ratio of the first two positive zeroes of the Bessel function $J_{1}[14,15]$. There is no indication [11] that c is necessarily an optimal choice for d.

For $n=3$ and $d=1$, a configuration called the Moser-Raiskii spindle implies that $m_{1}\left(\mathbb{R}^{3}\right) \leq 3 / 14 \approx 0.214$ [8]. Székely [16] improved the upper bound to $7 / 37 \approx 0.189$; this was further diminished to $3 / 16=0.1875$ in [13]. The best result currently known is $m_{1}\left(\mathbb{R}^{3}\right) \leq 0.165609$ [11].

For $n=4$ and $d=1$, an early result $m_{1}\left(\mathbb{R}^{4}\right) \leq 16 / 125=0.128$ [13] was superseded later by 0.112937 [11] and more recently improved to 0.100062 [17]. Upper bounds on $m_{1}\left(\mathbb{R}^{n}\right)$ are now known up to $n=24$; lower bounds seem to be relatively neglected.

Let us return finally to a lower bound, mentioned in [13]:

$$
\inf _{d>0} m_{1, d}\left(\mathbb{R}^{2}\right) \geq\left(\frac{1}{\chi_{m}\left(\mathbb{R}^{2}\right)}\right)^{2} \geq\left(\frac{1}{7}\right)^{2}=\frac{1}{49}
$$

and proved in [9]. The gap between $1 / 49 \approx 0.02$ and ≈ 0.14 deserves to be bridged! We are hopeful that someone will accept this challenge.
0.1. Addendum. Let I be a Lebesgue surface measurable subset of the unit sphere in \mathbb{R}^{3} with the property that no two vectors in I are orthogonal. Let α denote the largest possible area of such sets I, normalized by 4π. It is known [18] that $0.2928<\alpha<0.313$ and the upper bound is (again) the outcome of linear programming techniques.

References

[1] L. A. Székely, Erdős on unit distances and the Szemerédi-Trotter theorems, Paul Erdős and His Mathematics. II, Proc. 1999 Budapest conf., ed. G. Halász, L. Lovász, M. Simonovits and V. T. Sós, János Bolyai Math. Soc., 2002, pp. 649666; MR1954746 (2004a:52028).
[2] H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag, 1991, pp. 170-171, 177-180; MR1107516 (92c:52001).
[3] P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer-Verlag, 2005, pp. 234-237; MR2163782 (2006i:52001).
[4] S. R. Finch, Sierpinski's constant: Circle and divisor problems, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 122-125.
[5] H. T. Croft, Incidence incidents, Eureka (Cambridge) 30 (1967) 22-26.
[6] E. R. Scheinerman and D. H. Ullman, Fractional Graph Theory. A Rational Approach to the Theory of Graphs, Dover Publ., 2011, pp. 45-46, 54-55; http://www.ams.jhu.edu/ers/books/; MR2963519.
[7] L. Moser and W. Moser, 7 planar points which cannot be 3-colored, Canad. Math. Bull. 4 (1961) 187-189.
[8] D. G. Larmon and C. A. Rogers, The realization of distances within sets in Euclidean space, Mathematika 19 (1972) 1-24; MR0319055 (47 \#7601).
[9] L. A. Székely, Measurable chromatic number of geometric graphs and sets without some distances in Euclidean space, Combinatorica 4 (1984) 213-218; MR0771730 (85m:52008).
[10] L. A. Székely, Inclusion-exclusion formulae without higher terms, Ars Combin. 23 (1987) B, 7-20; MR0890334 (88e:05006).
[11] F. M. de Oliveira Filho and F. Vallentin, Fourier analysis, linear programming, and densities of distance avoiding sets in \mathbb{R}^{n}, J. European Math. Soc. 12 (2010) 1417-1428; arXiv:0808.1822; MR2734347 (2011m:42012).
[12] T. Keleti, M. Matolcsi, F. M. de Oliveira Filho and I. Z. Ruzsa, Better bounds for planar sets avoiding unit distances; arXiv:1501.00168.
[13] L. A. Székely and N. C. Wormald, Bounds on the measurable chromatic number of \mathbb{R}^{n}, Discrete Math. 75 (1989) 343-372; MR1001407 (90i:05040).
[14] S. R. Finch, Bessel function zeroes, unpublished note (2003).
[15] B. D. Kotlyar, On the packing density of a fuzzy set, Cybernetics and Systems Analysis 29 (1993) 648-655.
[16] L. A. Székely, Remarks on the chromatic number of geometric graphs, Graphs and Other Combinatorial Topics. Proc. $3^{\text {rd }}$ Czechoslovak Symposium on Graph Theory, Prague, 1982, ed. M. Fiedler, Teubner, 1983, pp. 312-315; MR0737057 (85e:05076).
[17] C. Bachoc, A. Passuello and A. Thiery, The density of sets avoiding distance 1 in Euclidean space, Discrete Comput. Geom. 53 (2015) 783-808; arXiv:1401.6140; MR3341578.
[18] E. DeCorte and O. Pikhurko, Spherical sets avoiding a prescribed set of angles, arXiv:1502.05030.

[^0]: ${ }^{0}$ Copyright © 2014 by Steven R. Finch. All rights reserved.

