Distance-Avoiding Sets in the Plane

STEVEN FINCH

March 18, 2014

Fix a real number d > 0. Let $D = \{1, d\}$ if $d \neq 1$; otherwise $D = \{1\}$ may simply be written as 1. A subset $S \subseteq \mathbb{R}^n$ is said to **avoid** D if $||x - y|| \notin D$ for all $x, y \in S$. For example, the union of open balls of radius 1/2 with centers in $(2\mathbb{Z})^n$ avoids the distance 1. If instead the balls have centers in $(3\mathbb{Z})^n$, then their union avoids $\{1, 2\}$.

It is natural to ask about the "largest possible" S that avoids D. Let B_R denote the ball of radius R with center 0. Assuming S is Lebesgue measurable, its **density**

$$\delta(S) = \limsup_{R \to \infty} \frac{\mu(B_R \cap S)}{\mu(B_R)}$$

quantifies the asymptotic proportion of \mathbb{R}^n occupied by S. We wish to know

 $m_D(\mathbb{R}^n) = \sup \{\delta(S) : S \text{ is measurable and avoids } D\}.$

The shortage of information regarding $m_D(\mathbb{R}^n)$ is surprising. Until further notice, let n = 2 and d = 1 for simplicity [1, 2, 3].

On the one hand, the number of \mathbb{Z}^2 points within B_R is $\sim \pi R^2$ [4], hence the number of $(2\mathbb{Z})^2$ points within B_R is $\sim (\pi/4) R^2$. Each open disk in our example has area $\pi/4$ and B_R has area πR^2 , thus $m_1(\mathbb{R}^2) \geq \pi/16 \approx 0.196$. It turns out we can do better by arranging the disks with centers according to an equilateral triangle lattice, giving $m_1(\mathbb{R}^2) \geq \pi/(8\sqrt{3}) \approx 0.227$. An additional improvement (replacing six portions of each circular circumference by linear segments) gives $m_1(\mathbb{R}^2) \geq 0.229365$. This is the best lower bound currently known [5, 6].

On the other hand, a configuration called the Moser spindle implies that $m_1(\mathbb{R}^2) \leq 2/7 \approx 0.286$ [7, 8]. Székely [9, 10] improved the upper bound to $12/43 \approx 0.279$. The best result currently known is $m_1(\mathbb{R}^2) \leq 0.258795$ via linear programming techniques [11, 12]. Erdős' conjecture that $m_1(\mathbb{R}^2) < 1/4$ seems out of reach.

Sets avoiding 1 have been studied by combinatorialists because of their association with the *measurable chromatic number* of the plane. What is the minimum number of colors $\chi_m(\mathbb{R}^2)$ required to color all points of \mathbb{R}^2 so that any two points at distance 1 receive distinct colors and so that points receiving the same color form Lebesgue measurable sets? It is known only that $5 \leq \chi_m(\mathbb{R}^2) \leq 7$ [13].

⁰Copyright © 2014 by Steven R. Finch. All rights reserved.

Let us now consider the case n = 2 and d = 2. The number of $(3\mathbb{Z})^2$ points within B_R is $\sim (\pi/9) R^2$. Each open disk in our example has area $\pi/4$ and B_R has area πR^2 , thus $m_{1,2}(\mathbb{R}^2) \geq \pi/36 \approx 0.087$. Better lower bounds can surely be found, akin to before. We also know that $m_{1,2}(\mathbb{R}^2) \leq 2/9 \approx 0.222$ [9]. No one appears to have pursued this case further.

A more interesting problem is to allow d to vary, in an effort to determine

$$\inf_{d>0} m_{1,d}(\mathbb{R}^2).$$

One line of research gave $m_{1,\sqrt{3}}(\mathbb{R}^2) \leq 2/11 \approx 0.182$ [9], now improved to $m_{1,\sqrt{3}}(\mathbb{R}^2) \leq 0.170213$ [11]. Another direction gives $m_{1,c}(\mathbb{R}^2) \leq 0.141577$, where

$$c = \frac{j_{1,2}}{j_{1,1}} = 1.8309303282...$$

is a ratio of the first two positive zeroes of the Bessel function J_1 [14, 15]. There is no indication [11] that c is necessarily an optimal choice for d.

For n = 3 and d = 1, a configuration called the Moser-Raiskii spindle implies that $m_1(\mathbb{R}^3) \leq 3/14 \approx 0.214$ [8]. Székely [16] improved the upper bound to $7/37 \approx 0.189$; this was further diminished to 3/16 = 0.1875 in [13]. The best result currently known is $m_1(\mathbb{R}^3) \leq 0.165609$ [11].

For n = 4 and d = 1, an early result $m_1(\mathbb{R}^4) \leq 16/125 = 0.128$ [13] was superseded later by 0.112937 [11] and more recently improved to 0.100062 [17]. Upper bounds on $m_1(\mathbb{R}^n)$ are now known up to n = 24; lower bounds seem to be relatively neglected.

Let us return finally to a lower bound, mentioned in [13]:

$$\inf_{d>0} m_{1,d}(\mathbb{R}^2) \ge \left(\frac{1}{\chi_m(\mathbb{R}^2)}\right)^2 \ge \left(\frac{1}{7}\right)^2 = \frac{1}{49}$$

and proved in [9]. The gap between $1/49 \approx 0.02$ and ≈ 0.14 deserves to be bridged! We are hopeful that someone will accept this challenge.

0.1. Addendum. Let I be a Lebesgue surface measurable subset of the unit sphere in \mathbb{R}^3 with the property that no two vectors in I are orthogonal. Let α denote the largest possible area of such sets I, normalized by 4π . It is known [18] that $0.2928 < \alpha < 0.313$ and the upper bound is (again) the outcome of linear programming techniques.

References

L. A. Székely, Erdős on unit distances and the Szemerédi-Trotter theorems, *Paul Erdős and His Mathematics. II*, Proc. 1999 Budapest conf., ed. G. Halász, L. Lovász, M. Simonovits and V. T. Sós, János Bolyai Math. Soc., 2002, pp. 649–666; MR1954746 (2004a:52028).

- [2] H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag, 1991, pp. 170–171, 177–180; MR1107516 (92c:52001).
- [3] P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer-Verlag, 2005, pp. 234–237; MR2163782 (2006i:52001).
- [4] S. R. Finch, Sierpinski's constant: Circle and divisor problems, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 122–125.
- [5] H. T. Croft, Incidence incidents, Eureka (Cambridge) 30 (1967) 22–26.
- [6] E. R. Scheinerman and D. H. Ullman, Fractional Graph Theory. A Rational Approach to the Theory of Graphs, Dover Publ., 2011, pp. 45–46, 54–55; http://www.ams.jhu.edu/ers/books/; MR2963519.
- [7] L. Moser and W. Moser, 7 planar points which cannot be 3-colored, Canad. Math. Bull. 4 (1961) 187–189.
- [8] D. G. Larmon and C. A. Rogers, The realization of distances within sets in Euclidean space, *Mathematika* 19 (1972) 1–24; MR0319055 (47 #7601).
- [9] L. A. Székely, Measurable chromatic number of geometric graphs and sets without some distances in Euclidean space, *Combinatorica* 4 (1984) 213–218; MR0771730 (85m:52008).
- [10] L. A. Székely, Inclusion-exclusion formulae without higher terms, Ars Combin. 23 (1987) B, 7–20; MR0890334 (88e:05006).
- [11] F. M. de Oliveira Filho and F. Vallentin, Fourier analysis, linear programming, and densities of distance avoiding sets in \mathbb{R}^n , J. European Math. Soc. 12 (2010) 1417–1428; arXiv:0808.1822; MR2734347 (2011m:42012).
- [12] T. Keleti, M. Matolcsi, F. M. de Oliveira Filho and I. Z. Ruzsa, Better bounds for planar sets avoiding unit distances; arXiv:1501.00168.
- [13] L. A. Székely and N. C. Wormald, Bounds on the measurable chromatic number of \mathbb{R}^n , *Discrete Math.* 75 (1989) 343–372; MR1001407 (90i:05040).
- [14] S. R. Finch, Bessel function zeroes, unpublished note (2003).
- [15] B. D. Kotlyar, On the packing density of a fuzzy set, Cybernetics and Systems Analysis 29 (1993) 648–655.

- [16] L. A. Székely, Remarks on the chromatic number of geometric graphs, Graphs and Other Combinatorial Topics. Proc. 3rd Czechoslovak Symposium on Graph Theory, Prague, 1982, ed. M. Fiedler, Teubner, 1983, pp. 312–315; MR0737057 (85e:05076).
- [17] C. Bachoc, A. Passuello and A. Thiery, The density of sets avoiding distance 1 in Euclidean space, *Discrete Comput. Geom.* 53 (2015) 783–808; arXiv:1401.6140; MR3341578.
- [18] E. DeCorte and O. Pikhurko, Spherical sets avoiding a prescribed set of angles, arXiv:1502.05030.