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Let  : {1 2 3   }→ {−1 1} be an arbitrary function. Given a threshold  0,

we ask two questions:

• Do there exist integers   0,  ≥ 0,   0 such that

|(+ ) + (2+ ) + (3+ ) + · · ·+ ( + )|  ?

• Do there exist integers   0,   0 such that

|() + (2) + (3) + · · ·+ ( )|  ?

The answer to the first question is yes. In words, every two-coloring of the positive

integers has unbounded discrepancy, taken over the family of arithmetic progressions.

Restricting attention to the subset {1 2 3     }, we have [1, 2, 3, 4]

 14 ≤  () = min


max


 +≤

¯̄̄̄
¯

X
=1

( + )

¯̄̄̄
¯ ≤  14

for all , with constants  ≥ 120 and  ∞. The lower bound on  is improved to

17 in [5]; no finite upper bound on  is apparently known. It is natural to wonder

about the numerical values of

liminf
→∞

−14 () limsup
→∞

−14 ()

The second question, due to Erdös [6, 7, 8] and Chudakov [9, 10], remains open.

It is remarkable that, upon mere constraint to homogeneity ( = 0), the problem

becomes unsolved! If we expand the family under consideration, more can be said.

For almost all real numbers  ≥ 1, there exists   0 such that [11, 12, 13]

| (bc) +  (b2c) +  (b3c) + · · ·+  (b c)|  
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Such quasi-arithmetic progressions collapse to homogeneous arithmetic progres-

sions when  is an integer. Even though the set  of counterexamples  has measure

zero, it is not known whether  avoids all integers.

We also examine the expression [14, 15]

() = min

max



+≤

¯̄̄̄
¯

X
=1

( + )( + )

¯̄̄̄
¯

and wonder about the numerical values of

liminf
→∞

−12() limsup
→∞

−12()

0.1. Addendum. If  is random (independently taking the values ±1 with prob-
ability 12 at each integer 1 ≤  ≤ ), then an asymptotic statement can be made

about the mean: [16]

E (|(1) + (2) + (3) + · · ·+ ()|) ∼
r
2



as →∞, and likewise

E (|(1)(1 + ) + (2)(2 + ) + (3)(3 + ) + · · ·+ (− )()|) ∼
r
2



for fixed  ≥ 1. A proof of the latter can be based on [17]; the order of () is 12
(in agreement) whereas the order of  () is only 14 (in disagreement).

From [18, 19], we learned of the Polymath wiki — which documents massively

collaborative online mathematical projects — and which includes work on problems

given here [20].

Nikolov & Talwar [21], building on Alon & Kalai [22], have shown that the fol-

lowing statement is true for infinitely many positive integers . There is a set

 ⊆ {1     } of square-free integers such that, for any  :  → {−1 1}, there
exists a positive integer  so that¯̄̄̄

¯̄ X
∈|

()

¯̄̄̄
¯̄ = 1(ln(ln()))

as  → ∞. (If we were permitted to define  = 0 outside of  , then the Erdös-

Chudakov problem would be solved. The values of  , however, are restricted to ±1,
disallowing such a construction.)
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Konev & Lisitsa [23, 24], assisted by computer, exhibited a length 1160 sequence

whose discrepancy is bounded by  = 2, but proved that such cannot be true for

any sequence of length ≥ 1161. Hence the Erdös-Chudakov conjecture (for infinite

sequences) is true for  = 2. They also exhibited a length 13000 sequence whose

discrepancy is bounded by = 3. Gowers’ survey [25] contains additional discussion.

Tao [26] evidently has the final word on this subject: every two-coloring of the

positive integers has unbounded discrepancy, taken over the family of homogeneous

arithmetic progressions. The existence of near-counterexamples (four are given in

[26]) serve to isolate the key difficulty of the problem. The argument also applies to

functions  taking values in the unit sphere of a real or complex Hilbert space.
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