Fraenkel Asymmetry

Steven Finch

April 1, 2014
For simplicity, we restrict attention to subregions of the plane. Let $\Omega \subseteq \mathbb{R}^{2}$ be the closure of a bounded, open, connected set of area $|\Omega|$ with piecewise continuously differentiable boundary and perimeter p. The classical isoperimetric inequality:

$$
p(\Omega) \geq(4 \pi|\Omega|)^{1 / 2} \quad \text { with equality iff } \Omega \text { is a disk }
$$

can be expressed as

$$
\delta(\Omega) \geq 0 \quad \text { with equality iff } \Omega \text { is a disk }
$$

where the isoperimetric deficit is

$$
\delta(\Omega)=\frac{p(\Omega)}{(4 \pi|\Omega|)^{1 / 2}}-1
$$

We wish to refine $\delta(\Omega) \geq 0$ so that the right-hand side vanishes only on disks and measures to what degree Ω deviates from a disk. Out of many possible choices, we examine Fraenkel asymmetry [1, 2, 3]

$$
\alpha(\Omega)=\inf \left\{\frac{|(\Omega \backslash D) \cup(D \backslash \Omega)|}{|\Omega|}: D \text { a disk with }|D|=|\Omega|\right\} .
$$

Note the symmetric difference of sets in the numerator (some authors employ $|\Omega \backslash D|$ instead, hence their results are off by a factor of 2). Before understanding best constants for the inequality $\delta(\Omega) \geq c \alpha(\Omega)^{2}$, that is, extreme values of the ratio $\delta(\Omega) / \alpha(\Omega)^{2}$, let us first examine $\alpha(\Omega)$ for several polygonal regions.

The Fraenkel asymmetry of a regular hexagon (side length 1) is

$$
\begin{aligned}
& \frac{1}{3 \sqrt{3} / 2} \cdot 12 \int_{\sqrt{3} / 2}^{\sqrt{3 \sqrt{3} /(2 \pi)}} \sqrt{\frac{3 \sqrt{3}}{2 \pi}-x^{2}} d x \\
= & \frac{-9 \sqrt{(2 \sqrt{3}-\pi) \pi}+18 \sqrt{3} \arccos (\sqrt{\pi /(2 \sqrt{3})})}{(3 \sqrt{3} / 2) \pi}=0.0744657545 \ldots
\end{aligned}
$$

[^0]

Figure 1: Symmetric difference between regular hexagon and Fraenkel disk.
which is quite close to zero (Figure 1). The square has greater asymmetry

$$
\begin{aligned}
& 16 \int_{1 / 2}^{1 / \sqrt{\pi}} \sqrt{\frac{1}{\pi}-x^{2}} d x \\
= & 4-\frac{2 \sqrt{(4-\pi) \pi}+8 \arcsin (\sqrt{\pi} / 2)}{\pi}=0.1810919376 \ldots
\end{aligned}
$$

and the equilateral triangle has still greater asymmetry

$$
\frac{1}{\sqrt{3} / 4} \cdot 12 \int_{0}^{1 / 4-\sqrt{3 \pi(3 \sqrt{3}-\pi)} /(12 \pi)}\left(\left(\frac{1}{\sqrt{3}}-\sqrt{3} x\right)-\sqrt{\frac{\sqrt{3}}{4 \pi}-x^{2}}\right) d x=0.3649426110 \ldots
$$

(omitting the exact expression, which is complicated).
Let $\ell \geq 2 / \sqrt{\pi}$. If Ω is the rectangle with vertices $(\pm \ell / 2, \pm 1 /(2 \ell))$, clearly $|\Omega|=1$ and

$$
\alpha(\Omega)=-\frac{1}{\ell^{2}} \sqrt{\frac{4 \ell^{2}-\pi}{\pi}}+\frac{4}{\pi} \arcsin \left(\sqrt{\frac{4 \ell^{2}-\pi}{4 \ell^{2}}}\right) \rightarrow 2
$$

as $\ell \rightarrow \infty$. Fraenkel asymmetry can never exceed 2 ; from

$$
p(\Omega)=2\left(\ell+\frac{1}{\ell}\right) \sim 2 \ell
$$

we deduce

$$
\alpha(\Omega) \sim 2-\frac{8}{\sqrt{\pi}} \frac{1}{p}+\frac{4 \sqrt{\pi}}{3} \frac{1}{p^{3}} .
$$

This example is inefficient (in terms of perimeter) by comparison with the following.
Let $0<\theta \leq \arctan (\pi / 4)$ and

$$
f(\theta)=\frac{\sqrt{\pi}}{4} \frac{\cos (\theta)^{2}}{\sin (\theta)}, \quad g(\theta)=\frac{1}{\sqrt{\pi}} \sin (\theta)
$$

Consider the rectangle with vertices $(\pm f(\theta), \pm g(\theta))$, capped on the right and left by semicircles. The equation of the boundary in the first quadrant only is

$$
y= \begin{cases}g(\theta) & \text { if } 0 \leq x \leq f(\theta) \\ \sqrt{g(\theta)^{2}-(x-f(\theta))^{2}} & \text { if } f(\theta)<x \leq f(\theta)+g(\theta)\end{cases}
$$

The region Ω^{\prime} in Figure 2, called a biscuit, satisfies $\left|\Omega^{\prime}\right|=1$ and $[4,5]$

$$
\alpha\left(\Omega^{\prime}\right)=\frac{2}{\pi}(\pi-2 \theta-2 \sin (\theta) \cos (\theta)) \rightarrow 2
$$

as $\theta \rightarrow 0^{+}$. From

$$
p\left(\Omega^{\prime}\right)=\sqrt{\pi} \frac{1+\sin (\theta)^{2}}{\sin (\theta)} \sim \frac{\sqrt{\pi}}{\theta}
$$

we deduce

$$
\alpha\left(\Omega^{\prime}\right) \sim 2-\frac{8}{\sqrt{\pi}} \frac{1}{p}+\frac{8 \sqrt{\pi}}{3} \frac{1}{p^{3}} .
$$

The third term when expanding $\alpha\left(\Omega^{\prime}\right)$ is greater than that for $\alpha(\Omega)$. These asymptotics are consistent with a theorem that, among all convex sets Ω of unit area and fixed perimeter

$$
p \geq p_{0}=\frac{2}{\sqrt{\pi}} \frac{\pi^{2}+8}{\sqrt{\pi^{2}+16}}=3.9643784229 \ldots
$$

the biscuit maximizes α. Write $E_{p}=\Omega^{\prime}$ for convenience. Since $\delta(\Omega)=p(4 \pi)^{-1 / 2}-1$ is fixed, E_{p} coincides with the solution of a restricted version of the earlier optimization problem.

Figure 2: For a biscuit (or stadium or racetrack) of unit area, θ is the angle determined by the intersection between its boundary and the circle with common center, radius $1 / \sqrt{\pi}$.

If $2 \sqrt{\pi}<p<p_{0}$, then the maximizing convex set E_{p} is called an oval whose boundary consists of four symmetrically placed circular arcs. We omit all details except to remark that $\arctan (\pi / 4)<\theta<\pi / 4$ for these. Also of interest is $[5,6,7]$

$$
\min _{p>2 \sqrt{\pi}} \frac{\delta\left(E_{p}\right)}{\alpha\left(E_{p}\right)^{2}}=0.4055851970 \ldots=\frac{1}{4}(1.6223407880 \ldots)
$$

which is achieved for a specific biscuit. Allowing non-convex sets to enter the discussion,

$$
\frac{\delta\left(E_{\mathrm{nc}}\right)}{\alpha\left(E_{\mathrm{nc}}\right)^{2}} \approx 0.39314
$$

is achieved by a certain set, called a mask, whose boundary involves eight circular arcs. Proof of this latter new assertion has not yet appeared.

Finally, we turn to an older topic: the calculation of maximal coefficients c_{k} in the asymptotic estimate

$$
\delta(\Omega) \geq \sum_{k=1}^{m} c_{k} \alpha(\Omega)^{k}+o\left(\alpha(\Omega)^{m}\right)
$$

for arbitrary Ω. The fact that $c_{k}=0$ for odd k and $[8,9,10]$

$$
c_{2}=\frac{\pi}{8(4-\pi)}=0.4574740457 \ldots=\frac{1}{4}(1.8298961831 \ldots)
$$

has been known since the 1990s; the fact that [6]

$$
\begin{gathered}
c_{4}=-\frac{\pi^{3}(3 \pi-14)(5 \pi-16)}{96(4-\pi)^{4}(\pi-2)}=-0.6962146734 \ldots, \\
c_{6}=\frac{\pi^{5}\left(-759808+1619648 \pi-1386576 \pi^{2}+612992 \pi^{3}-148024 \pi^{4}+18552 \pi^{5}-945 \pi^{5}\right)}{2880(4-\pi)^{7}(\pi-2)^{4}} \\
=-1.7607874382 \ldots
\end{gathered}
$$

was found only in 2013. Verification makes use of a sequence of ovals converging to the disk $\left(\theta \rightarrow(\pi / 4)^{-}\right)$.

We witnessed two measures of asymmetry (in a different context) in [11]; Reuleaux polygons are mentioned in [12]. Yet another measure - Hausdorff asymmetry - is found in [13].
0.1. Geometric Uncertainty Principle. For the following, an assumption of finite perimeter is not needed, thus hypotheses may be weakened. Let $\Omega \subseteq \mathbb{R}^{2}$ be an open bounded region with a given decomposition

$$
\Omega=\bigcup_{j=1}^{N} \Omega_{j}
$$

into disjoint Lebesgue measurable sets Ω_{j}. Define the $j^{\text {th }}$ area deviation

$$
\sigma\left(\Omega_{j}\right)=\frac{\left|\Omega_{j}\right|-\min _{1 \leq i \leq N}\left|\Omega_{i}\right|}{\left|\Omega_{j}\right|}
$$

which satisfies $0 \leq \sigma\left(\Omega_{j}\right) \leq 1$ and, like $\alpha\left(\Omega_{j}\right)$, is scale-invariant. Steinerberger [14] proved the remarkable existence of a universal constant $\kappa>0$ such that, for sufficiently large N depending only on Ω, the sum

$$
\left(\sum_{j=1}^{N} \frac{\left|\Omega_{j}\right|}{|\Omega|} \alpha\left(\Omega_{j}\right)\right)+\left(\sum_{j=1}^{N} \frac{\left|\Omega_{j}\right|}{|\Omega|} \sigma\left(\Omega_{j}\right)\right) \geq \kappa
$$

It is known that κ is at least $1 / 60000$ and conjectured that $\kappa=0.0744657545 \ldots$, which corresponds to the regular hexagonal tiling of the plane. Another candidate tiling of the plane - Kepler's circle packing with exactly one adjacent hourglass per disk (Figure 3) - gives a considerably larger sum.
0.2. Bisecting Chords. As an aside, given a planar measurable convex set Ω, a bisecting chord is a line segment whose endpoints lie on the boundary of Ω and which partitions Ω into two subsets of equal area. For example, a disk D of radius $1 / 2$ possesses infinitely many bisecting chords, all of length 1 . The area of such a disk is $\pi / 4=0.7853981633 \ldots$. For most sets Ω, we expect bisecting chord lengths to vary. Suppose Ω has the property that its maximum bisecting chord length is 1 . How small can the area of such a set Ω be? Is D the area-minimizing set Ω ?

The answer to the second question is no. Define the Auerbach triangle Δ (or rounded triangle) to consist of six parts, three linear and three nonlinear, with the topmost part (the dashed curve in Figure 4) given parametrically by $[15,16,17]$

$$
x(t)=\frac{e^{4 t}-1}{e^{4 t}+1}-t, \quad y(t)=2 \frac{e^{2 t}}{e^{4 t}+1}, \quad-\frac{\ln (3)}{4} \leq t \leq \frac{\ln (3)}{4} .
$$

Then Δ satisfies the required property, but its area is

$$
\frac{\sqrt{3}}{8}\left(8 \ln (3)-\ln (3)^{2}-4\right)=0.7755147827 \ldots=\frac{1}{4}(3.1020591308 \ldots)<\frac{\pi}{4}
$$

Figure 3: Tiling of the plane using disks and hourglasses in equal proportion.
This numerical value is the answer to the first question. A third question is: How large can the perimeter of such a set Ω be? Note that the perimeter of Δ is $3 \ln (3)=$ $3.2958368660 \ldots>\pi$ and Δ evidently is the perimeter-maximizing set Ω as well. Related materials include [18, 19, 20, 22, 21, 23].
0.3. Addendum. Let Ω be the ellipse $x^{2} / \ell^{2}+\ell^{2} y^{2} \leq 1 / \pi$ and Ω^{\prime} be the rhombus with vertices $(\pm \ell, 0),(0, \pm 1 /(2 \ell))$. Clearly $|\Omega|=\left|\Omega^{\prime}\right|=1$ and

$$
\begin{gathered}
\alpha(\Omega)=\frac{4}{\pi}\left[\arcsin \left(\frac{\ell}{\sqrt{1+\ell^{2}}}\right)-\arcsin \left(\frac{1}{\sqrt{1+\ell^{2}}}\right)\right], \\
\alpha\left(\Omega^{\prime}\right)=8 \int_{0}^{\xi}\left[\sqrt{\frac{1}{\pi}-x^{2}}-\frac{1}{2 \ell^{2}}(\ell-x)\right] d x
\end{gathered}
$$

where

$$
\xi=\frac{\ell}{1+4 \ell^{4}}+\frac{2 \ell^{2} \sqrt{1+\left(4 \ell^{2}-\pi\right) \ell^{2}}}{\left(1+4 \ell^{4}\right) \sqrt{\pi}}
$$

Figure 4: Auerbach triangle with unit bisecting (halving) chords.
(the exact expression for $\alpha\left(\Omega^{\prime}\right)$ is complicated). From

$$
p(\Omega)=\frac{4 \ell}{\sqrt{\pi}} \int_{0}^{\pi / 2} \sqrt{1-\left(1-\frac{1}{\ell^{4}}\right) \cos (\theta)^{2}} d \theta \sim \frac{4 \ell}{\sqrt{\pi}}
$$

(an elliptic integral of the second kind) and

$$
p\left(\Omega^{\prime}\right)=4 \sqrt{\ell^{2}+\frac{1}{4 \ell^{2}}} \sim 4 \ell
$$

we deduce that, as $\ell \rightarrow \infty$,

$$
\alpha(\Omega) \sim 2-\frac{32}{\pi^{3 / 2}} \frac{1}{p}, \quad \alpha\left(\Omega^{\prime}\right) \sim 2-\frac{16}{\sqrt{\pi}} \frac{1}{p}
$$

which again are inefficient by comparison with a biscuit. More computations of Fraenkel asymmetry are found in [24], related to the study of various triangle centers [25, 26].
0.4. Acknowledgement. I am thankful to Stefan Steinerberger for his generous correspondence and kind help.

References

[1] N. Fusco, F. Maggi and A. Pratelli, The sharp quantitative isoperimetric inequality, Annals of Math. 168 (2008) 941-980; MR2456887 (2009k:52021).
[2] F. Maggi, Some methods for studying stability in isoperimetric type problems, Bull. Amer. Math. Soc. 45 (2008) 367-408; MR2402947 (2009b:49105).
[3] M. Cicalese and G. P. Leonardi, A selection principle for the sharp quantitative isoperimetric inequality, Arch. Ration. Mech. Anal. 206 (2012) 617-643; arXiv:1007.3899; MR2980529.
[4] S. Campi, Isoperimetric deficit and convex plane sets of maximum translative discrepancy, Geom. Dedicata 43 (1992) 71-81; MR1169365 (93d:52012).
[5] A. Alvino, V. Ferone and C. Nitsch, A sharp isoperimetric inequality in the plane, J. European Math. Soc. 13 (2011) 185-206; MR2735080 (2011k:52007).
[6] M. Cicalese and G. P. Leonardi, Best constants for the isoperimetric inequality in quantitative form, J. European Math. Soc. 15 (2013) 1101-1129; arXiv:1101.0169; MR3085102.
[7] C. Bianchini, G. Croce and A. Henrot, On the quantitative isoperimetric inequality in the plane, arXiv:1507.08189.
[8] R. R. Hall, W. K. Hayman and A. W. Weitsman, On asymmetry and capacity, J. d'Analyse Math. 56 (1991) 87-123; MR1243100 (95h:31004).
[9] R. R. Hall, A quantitative isoperimetric inequality in n-dimensional space, J. Reine Angew. Math. 428 (1992) 161-176; MR1166511 (93d:51041).
[10] R. R. Hall and W. K. Hayman, A problem in the theory of subordination, J. d’Analyse Math. 60 (1993) 99-111; MR1253231 (94m:42010).
[11] S. R. Finch, Reuleaux triangle constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 513-515.
[12] F. Maggi, M. Ponsiglione and A. Pratelli, Quantitative stability in the isodiametric inequality via the isoperimetric inequality, Trans. Amer. Math. Soc. 366 (2014) 1141-1160; arXiv:1104.4074; MR3145725.
[13] A. Alvino, V. Ferone and C. Nitsch, A sharp isoperimetric inequality in the plane involving Hausdorff distance, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 20 (2009) 397-412; MR2550854 (2010i:52012).
[14] S. Steinerberger, A geometric uncertainty principle with an application to Pleijel's estimate, Annales Henri Poincaré 15 (2014) 2299-2319; arXiv:1306.3103; MR3272823.
[15] N. Fusco and A. Pratelli, On a conjecture by Auerbach, J. European Math. Soc. 13 (2011) 1633-1676; http://cvgmt.sns.it/paper/1138/; MR2835326 (2012h:52021).
[16] L. Esposito, V. Ferone, B. Kawohl, C. Nitsch and C. Trombetti, The longest shortest fence and sharp Poincaré-Sobolev inequalities, Arch. Ration. Mech. Anal. 206 (2012) 821-851; arXiv:1011.6248; MR2989444.
[17] A. Dumitrescu, A. Ebbers-Baumann, A. Grüne, R. Klein and G. Rote, On the geometric dilation of closed curves, graphs, and point sets, Comput. Geom. 36 (2007) 16-38; MR2264047 (2008g:52024).
[18] H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag, 1991, pp. 37-38; MR1107516 (92c:52001).
[19] P. Goodey, Area and perimeter bisectors of planar convex sets, Integral Geometry and Convexity, Proc. 2004 Wohan conf., ed. E. L. Grinberg, S. Li, G. Zhang and J. Zhou, World Sci. Publ., 2006, 29-35; MR2240971 (2007e:52010).
[20] A. Ebbers-Baumann, A. Grüne and R. Klein, Geometric dilation of closed planar curves: new lower bounds, Comput. Geom. 37 (2007) 188-208; MR2331064 (2008b:52023).
[21] A. Ebbers-Baumann, A. Grüne and R. Klein, On the geometric dilation of finite point sets, Algorithms and Computation, Proc. $14^{\text {th }}$ Internat. Symp. (ISAAC 2003), Kyoto, 2003, ed. T. Ibaraki, N. Katoh and H. Ono, Lect. Notes in Comp. Sci. 2906, Springer-Verlag, 2003, pp. 250-259; MR2087565 (2005d:68136).
[22] A. Ebbers-Baumann, A. Grüne and R. Klein, The geometric dilation of finite point sets, Algorithmica 44 (2006) 137-149; MR2194472 (2006m:68159).
[23] S. Steinerberger, A remark on disk packings and numerical integration of harmonic functions, arXiv:1403.8002.
[24] S. R. Finch, In limbo: Three triangle centers, arXiv:1406.0836.
[25] S. R. Finch, Least capacity point of triangles, arXiv:1407.4105.
[26] S. R. Finch, Appell F1 and conformal mapping, arXiv:1408.1074.

[^0]: ${ }^{0}$ Copyright © 2014 by Steven R. Finch. All rights reserved.

