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The Fermat numbers  = 2
2 + 1 satisfy a quadratic recurrence [1]

+1 = ( − 1)2 + 1  ≥ 0

and are pairwise coprime. It is conjectured that  are always square-free and that,

beyond 4, they are never prime. The latter would imply that there are exactly

31 regular polygons with an odd number  of sides that can be constructed by

straightedge and compass [2]. The values 1, 2,   , 31 encompass all divisors of

232−1 except unity [3]. Let 0 = 1. If we scan each row of Pascal’s triangle modulo

2 as a binary integer, then the numbers  (listed in ascending order) are naturally

extended without bound. The reciprocal sum [4]
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is irrational [2]; in contrast,
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is rational, where {} is the Thue-Morse sequence {0 1 1 0 1 0 0 1 1 0 } [5].
Golomb [6] proved that
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is irrational and Duverney [7] proved that it is transcendental; there is evidence that

Mahler possessed these results far earlier [8]

Let  denote the set of all primes  for which there exists  such that  divides

. Křížek, Luca & Somer [9] proved thatX
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is convergent, answering a question raised in [10]. The series
P

∈ 1 likewise
converges, where  is the set of all divisors   1 (prime or composite) for which

there exists  such that  divides . The smallest element of  not in  is 5 itself

[11, 12].

A prime  is called elite [13] if there exists  for which all  with    are

quadratic non-residues of , that is, the equation

2 ≡ mod 

has no solutions  for   . Let  denote the (infinite?) set of all elite primes.

The series [14, 15, 16, 17] X
∈
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is convergent [9]. This numerical evaluation, as well as that for the series over  ∈  ,

is non-rigorous. For our calculation over  ∈  to be valid, we would need

# { ∈  :  ≤ } = (ln())

as  →∞; the best current bound is  ( ln()2), hence improvement in our knowl-
edge of  will be required. Generalization to the numbers  = 2



+ 1, for fixed

integer  ≥ 2, is found in [18].
We conclude with the fact that
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22
 = 08164215090

is transcendental, proved by Kempner [19] and revisited in [20].
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