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The Fermat numbers F,, = 2*" + 1 satisfy a quadratic recurrence [1]
Foa=(F,—12?+1, n>0

and are pairwise coprime. It is conjectured that F), are always square-free and that,
beyond Fjy, they are never prime. The latter would imply that there are exactly
31 regular polygons with an odd number G,, of sides that can be constructed by
straightedge and compass [2]. The values G1, Gs, ..., G3; encompass all divisors of
232 — 1 except unity [3]. Let Go = 1. If we scan each row of Pascal’s triangle modulo
2 as a binary integer, then the numbers G,, (listed in ascending order) are naturally
extended without bound. The reciprocal sum [4]

— 1+ — ) =1.7007354952...
> -11(1+ %)

m=0

is rational, where {¢,,} is the Thue-Morse sequence {0,1,1,0,1,0,0,1,1,0,...} [5].
Golomb [6] proved that

1
Z — =0.5960631721...
n=0 Fn

is irrational and Duverney [7] proved that it is transcendental; there is evidence that
Mahler possessed these results far earlier [8].

Let P denote the set of all primes p for which there exists n such that p divides
F,.. Kiizek, Luca & Somer [9] proved that

1
Z = = (.5976404758...

peP
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is convergent, answering a question raised in [10]. The series ), , 1/d likewise
converges, where D is the set of all divisors d > 1 (prime or composite) for which
there exists n such that d divides F;,. The smallest element of D not in P is Fj itself
[11, 12].

A prime p is called elite [13] if there exists m for which all £, with n > m are
quadratic non-residues of p, that is, the equation

z? = F, modp

has no solutions = for n > m. Let E denote the (infinite?) set of all elite primes.
The series [14, 15, 16, 17|

1
Z]; = 0.7007640115...

peE

is convergent [9]. This numerical evaluation, as well as that for the series over p € P,
is non-rigorous. For our calculation over p € E to be valid, we would need

#{p€ E:p<q}=0(n(qg)

as ¢ — oo; the best current bound is O (¢/In(q)?), hence improvement in our knowl-
edge of E will be required. Generalization to the numbers F},, = b*" + 1, for fixed
integer b > 2, is found in [18].

We conclude with the fact that

o0

1
D> 5o = 0.8164215090...

n=0
is transcendental, proved by Kempner [19] and revisited in [20].
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