# Fermat Numbers and Elite Primes 

Steven Finch

November 12, 2013
The Fermat numbers $F_{n}=2^{2^{n}}+1$ satisfy a quadratic recurrence [1]

$$
F_{n+1}=\left(F_{n}-1\right)^{2}+1, \quad n \geq 0
$$

and are pairwise coprime. It is conjectured that $F_{n}$ are always square-free and that, beyond $F_{4}$, they are never prime. The latter would imply that there are exactly 31 regular polygons with an odd number $G_{m}$ of sides that can be constructed by straightedge and compass [2]. The values $G_{1}, G_{2}, \ldots, G_{31}$ encompass all divisors of $2^{32}-1$ except unity [3]. Let $G_{0}=1$. If we scan each row of Pascal's triangle modulo 2 as a binary integer, then the numbers $G_{m}$ (listed in ascending order) are naturally extended without bound. The reciprocal sum [4]

$$
\sum_{m=0}^{\infty} \frac{1}{G_{m}}=\prod_{n=0}^{\infty}\left(1+\frac{1}{F_{n}}\right)=1.7007354952 \ldots
$$

is irrational [2]; in contrast,

$$
\sum_{m=0}^{\infty} \frac{(-1)^{t_{m}}}{G_{m}}=\frac{1}{2}
$$

is rational, where $\left\{t_{m}\right\}$ is the Thue-Morse sequence $\{0,1,1,0,1,0,0,1,1,0, \ldots\}$ [5]. Golomb [6] proved that

$$
\sum_{n=0}^{\infty} \frac{1}{F_{n}}=0.5960631721 \ldots
$$

is irrational and Duverney [7] proved that it is transcendental; there is evidence that Mahler possessed these results far earlier [8].

Let $P$ denote the set of all primes $p$ for which there exists $n$ such that $p$ divides $F_{n}$. Křížek, Luca \& Somer [9] proved that

$$
\sum_{p \in P} \frac{1}{p}=0.5976404758 \ldots
$$

[^0]is convergent, answering a question raised in [10]. The series $\sum_{d \in D} 1 / d$ likewise converges, where $D$ is the set of all divisors $d>1$ (prime or composite) for which there exists $n$ such that $d$ divides $F_{n}$. The smallest element of $D$ not in $P$ is $F_{5}$ itself [11, 12].

A prime $p$ is called elite [13] if there exists $m$ for which all $F_{n}$ with $n>m$ are quadratic non-residues of $p$, that is, the equation

$$
x^{2} \equiv F_{n} \bmod p
$$

has no solutions $x$ for $n>m$. Let $E$ denote the (infinite?) set of all elite primes. The series $[14,15,16,17]$

$$
\sum_{p \in E} \frac{1}{p}=0.7007640115 \ldots
$$

is convergent [9]. This numerical evaluation, as well as that for the series over $p \in P$, is non-rigorous. For our calculation over $p \in E$ to be valid, we would need

$$
\#\{p \in E: p \leq q\}=O(\ln (q))
$$

as $q \rightarrow \infty$; the best current bound is $O\left(q / \ln (q)^{2}\right)$, hence improvement in our knowledge of $E$ will be required. Generalization to the numbers $F_{b, n}=b^{2^{n}}+1$, for fixed integer $b \geq 2$, is found in [18].

We conclude with the fact that

$$
\sum_{n=0}^{\infty} \frac{1}{2^{2^{n}}}=0.8164215090 \ldots
$$

is transcendental, proved by Kempner [19] and revisited in [20].

## References

[1] S. R. Finch, Quadratic recurrence constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 443-448.
[2] M. Křižek, F. Luca and L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer-Verlag, 2001, pp. 33-35, 44, 75-77,104-113; MR1866957 (2002i:11001).
[3] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000215, A001317, A004729 and A045544.
[4] V. Shevelev, On Stephan's conjectures concerning Pascal triangle modulo 2, arXiv:1011.6083.
[5] S. R. Finch, Prouhet-Thue-Morse constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 436-441.
[6] S. W. Golomb, On the sum of the reciprocals of the Fermat numbers and related irrationalities, Canad. J. Math. 15 (1963) 475-478; MR0150102 (27 \#105).
[7] D. Duverney, Transcendence of a fast converging series of rational numbers, Math. Proc. Cambridge Philos. Soc. 130 (2001) 193-207; MR1806772 (2002e:11089).
[8] M. Coons, On the rational approximation of the sum of the reciprocals of the Fermat numbers, Ramanujan J. 30 (2013) 39-65; arXiv:1112.5072; MR3010463.
[9] M. Křižek, F. Luca and L. Somer, On the convergence of series of reciprocals of primes related to the Fermat numbers, J. Number Theory 97 (2002) 95-112; MR1939138 (2003i:11015).
[10] S. W. Golomb, Sets of primes with intermediate density, Math. Scand. 3 (1955) 264-274; MR0075981 (17,828d).
[11] W. Keller, Prime factors $k \cdot 2^{n}+1$ of Fermat numbers $F_{m}$ and complete factoring status, http://www.prothsearch.net/fermat.html.
[12] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A023394 and A102742.
[13] A. Aigner, Über Primzahlen, nach denen (fast) alle Fermatschen Zahlen quadratische Nichtreste sind, Monatsh. Math. 101 (1986) 85-93; MR0843294 (87g:11010).
[14] A. Chaumont and T. Müller, All elite primes up to 250 billion, J. Integer Seq. 9 (2006) 06.3.8; MR2240858 (2007e:11005).
[15] T. Müller, Searching for large elite primes, Experim. Math. 15 (2006) 183-186; MR2253004 (2008a:11008).
[16] A. Chaumont, J. Leicht, T. Müller and A. Reinhart, The continuing search for large elite primes, Internat. J. Number Theory 5 (2009) 209-218; MR2502805 (2010d:11003).
[17] D. R. Martin, Elite prime search complete to 1E14, http://www.primenace.com/papers/math/ElitePrimes.htm.
[18] T. Müller, A generalization of a theorem by Křižek, Luca, and Somer on elite primes, Analysis 28 (2008) 375-382; MR2477353 (2010a:11013).
[19] A. J. Kempner, On transcendental numbers, Trans. Amer. Math. Soc. 17 (1916) 476-482.
[20] B. Adamczewski, The many faces of the Kempner number, J. Integer Seq. 16 (2013) A 13.2.15; arXiv:1303.1685; MR3032398.


[^0]:    ${ }^{0}$ Copyright © 2013 by Steven R. Finch. All rights reserved.

