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The Bernoulli numbers 0, 1, 2, ... are defined via [1, 2, 3]
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=0





!

and satisfy 0 = 1, 1 = −12, (−1)+12  0 and 2+1 = 0 for  ≥ 1. It can be
shown that |2| is strictly increasing after its minimum at 6 = 142, and

|2| ∼ 2(2)!
(2)2

∼ 4
√


µ




¶2
as  → ∞. Let {} =  − bc denote the fractional part of a real number ; for
example,

{2} = {16} = 1
6
 {4} = {− 1

30
} = 29

30


{14} = {76} = 1
6
 {16} = {−3617510

} = 463
510



The sequence {2}, {4}, {6}, ... is dense in the unit interval [0 1], but it is not
uniformly distributed [4]. Certain rational numbers appear with positive probability:

16 is most likely with probability 0151, 2930 is next with probability 0064

[5]. In fact, the limiting distribution  is piecewise linear with countably many

jump discontinuities:  increases only when jumping (see Figure 1). We wonder, in

particular, about the moments of  . By the von Staudt-Clausen theorem, the mean

fractional part is [6]
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and the mean fractional part squared is
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= 04396
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The inner sum is over all primes  such that −1 divides 2. No analytic simplification
of such formulas is known.

We wonder too about an unrelated quantity

lim
→∞
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X
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= 0452

which is close to
P
12 = 04522474200 [7]. Might these two quantities be equal?

If the sum
P
1 is replaced by the reciprocal of the least prime factor −() of ,

then interestingly [8, 9]
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¶
where the inner product is over all primes  less than . In principle, this latter

expression can be evaluated to high precision. A similar replacement for the average of

{2} is not clear. Observe that  = 2 and  = 3 both satisfy (−1)|2 automatically
for any  ≥ 1. The issue is thus determining the smallest such prime exceeding 3 for
each  (if one exists) and this may be awkward.

A famous conjecture, due to Siegel [10, 11, 12, 13], is as follows. An odd prime

 is regular if it does not divide the numerator of any of the Bernoulli numbers 2,

4, 6, ..., −3; otherwise  is irregular. It seems to be true that

lim
→∞

X
≤

 irregular

1

X
≤

 regular

1
= 12 − 1 = 06487212707

but a proof is not known. Equivalently, we have

lim
→∞

ln()



X
≤

 irregular

1 = 1− −12 = 03934693402

lim
→∞

ln()



X
≤

 regular

1 = −12 = 06065306597

In 1851, Kummer proved that Fermat’s Last Theorem holds when the exponent is

a regular prime. Although FLT was proved by Wiles in 1995, we still do not know

whether there exist infinitely many regular primes.

See also [14, 15] for the asymptotics for
Q

≤ |2| .
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0.1. Addendum. Tanguy Rivoal was so kind to answer my question regarding

0452 with an affirmative proof. Letting

 =
X
≤

X
|

1




it is clear that
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Since − 1  bc ≤ , we obtainX
≤

1
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1


 ≤

X
≤

1
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and the result follows because
P

≤ 1 = (ln ln).
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