Fractional Parts of Bernoulli Numbers

Steven Finch

April 10, 2007
The Bernoulli numbers $B_{0}, B_{1}, B_{2}, \ldots$ are defined via $[1,2,3]$

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}
$$

and satisfy $B_{0}=1, B_{1}=-1 / 2,(-1)^{k+1} B_{2 k}>0$ and $B_{2 k+1}=0$ for $k \geq 1$. It can be shown that $\left|B_{2 k}\right|$ is strictly increasing after its minimum at $B_{6}=1 / 42$, and

$$
\left|B_{2 k}\right| \sim \frac{2(2 k)!}{(2 \pi)^{2 k}} \sim 4 \sqrt{\pi k}\left(\frac{k}{e \pi}\right)^{2 k}
$$

as $k \rightarrow \infty$. Let $\{x\}=x-\lfloor x\rfloor$ denote the fractional part of a real number x; for example,

$$
\begin{gathered}
\left\{B_{2}\right\}=\left\{\frac{1}{6}\right\}=\frac{1}{6}, \quad\left\{B_{4}\right\}=\left\{-\frac{1}{30}\right\}=\frac{29}{30} \\
\left\{B_{14}\right\}=\left\{\frac{7}{6}\right\}=\frac{1}{6}, \quad\left\{B_{16}\right\}=\left\{-\frac{3617}{510}\right\}=\frac{463}{510} .
\end{gathered}
$$

The sequence $\left\{B_{2}\right\},\left\{B_{4}\right\},\left\{B_{6}\right\}, \ldots$ is dense in the unit interval $[0,1]$, but it is not uniformly distributed [4]. Certain rational numbers appear with positive probability: $1 / 6$ is most likely with probability $0.151 \ldots, 29 / 30$ is next with probability $0.064 \ldots$ [5]. In fact, the limiting distribution F is piecewise linear with countably many jump discontinuities: F increases only when jumping (see Figure 1). We wonder, in particular, about the moments of F. By the von Staudt-Clausen theorem, the mean fractional part is [6]

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left\{-\sum_{(p-1) \mid 2 n} \frac{1}{p}\right\}=0.5486 \ldots
$$

and the mean fractional part squared is

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left\{-\sum_{(p-1) \mid 2 n} \frac{1}{p}\right\}^{2}=0.4396 \ldots
$$

[^0]The inner sum is over all primes p such that $p-1$ divides $2 n$. No analytic simplification of such formulas is known.

We wonder too about an unrelated quantity

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \sum_{p \mid n} \frac{1}{p}=0.452 \ldots
$$

which is close to $\sum 1 / p^{2}=0.4522474200 \ldots[7]$. Might these two quantities be equal? If the sum $\sum 1 / p$ is replaced by the reciprocal of the least prime factor $P^{-}(n)$ of n, then interestingly $[8,9]$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \frac{1}{P^{-}(n)}=\sum_{p} \frac{1}{p^{2}} \prod_{q<p}\left(1-\frac{1}{q}\right)
$$

where the inner product is over all primes q less than p. In principle, this latter expression can be evaluated to high precision. A similar replacement for the average of $\left\{B_{2 n}\right\}$ is not clear. Observe that $p=2$ and $p=3$ both satisfy $(p-1) \mid 2 n$ automatically for any $n \geq 1$. The issue is thus determining the smallest such prime exceeding 3 for each n (if one exists) and this may be awkward.

A famous conjecture, due to Siegel [10, 11, 12, 13], is as follows. An odd prime p is regular if it does not divide the numerator of any of the Bernoulli numbers B_{2}, $B_{4}, B_{6}, \ldots, B_{p-3}$; otherwise p is irregular. It seems to be true that

$$
\lim _{N \rightarrow \infty} \frac{\sum_{\substack{p \leq N, p \text { irregular }}} 1}{\sum_{\substack{p \leq N, p \text { regular }}} 1}=e^{1 / 2}-1=0.6487212707 \ldots
$$

but a proof is not known. Equivalently, we have

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \frac{\ln (N)}{N} \sum_{\substack{p \leq N, p \text { irregular }}} 1=1-e^{-1 / 2}=0.3934693402 \ldots, \\
\lim _{N \rightarrow \infty} \frac{\ln (N)}{N} \sum_{\substack{p \leq N, \ldots \\
p \text { regular }}} 1=e^{-1 / 2}=0.6065306597 \ldots
\end{gathered}
$$

In 1851, Kummer proved that Fermat's Last Theorem holds when the exponent is a regular prime. Although FLT was proved by Wiles in 1995, we still do not know whether there exist infinitely many regular primes.

See also $[14,15]$ for the asymptotics for $\prod_{k \leq K}\left|B_{2 k}\right|$.
0.1. Addendum. Tanguy Rivoal was so kind to answer my question regarding $0.452 \ldots$ with an affirmative proof. Letting

$$
S_{N}=\sum_{n \leq N} \sum_{p \mid n} \frac{1}{p},
$$

it is clear that

$$
S_{N}=\sum_{p \leq N} \frac{1}{p} \sum_{\substack{n \leq N, p \mid n}} 1=\sum_{p \leq N} \frac{1}{p} \sum_{m \leq N / p} 1=\sum_{p \leq N} \frac{\lfloor N / p\rfloor}{p} .
$$

Since $N / p-1<\lfloor N / p\rfloor \leq N / p$, we obtain

$$
\sum_{p \leq N} \frac{1}{p^{2}}-\frac{1}{N} \sum_{p \leq N} \frac{1}{p}<\frac{1}{N} S_{N} \leq \sum_{p \leq N} \frac{1}{p^{2}}
$$

and the result follows because $\sum_{p \leq N} 1 / p=O(\ln \ln N)$.

References

[1] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, $2^{\text {nd }}$ ed., Springer-Verlag, 1990, pp. 228-248, 264-266; MR1070716 (92e:11001).
[2] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 264-266; MR0434929 (55 \#7892).
[3] C. J. Moreno and S. S. Wagstaff, Sums of Squares of Integers, Chapman \& Hall/CRC, 2006, pp. 61-116; MR2189437 (2006m:11048).
[4] P. Erdös and S. S. Wagstaff, The fractional parts of the Bernoulli numbers, Illinois J. Math. 24 (1980) 104-112; MR0550654 (81c:10064).
[5] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A045979, A046886, A051222, A051225, A051226, A067513.
[6] S. Plouffe, Computations involving Bernoulli denominators, unpublished note (2007).
[7] S. R. Finch, Meissel-Mertens constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 94-98.
[8] W. P. Zhang, Average-value estimation of a class of number-theoretic functions (in Chinese), Acta Math. Sinica 32 (1989) 260-267; MR1025146 (90k:11124).
[9] S. R. Finch, Series involving arithmetic functions, unpublished note (2007).
[10] J. L. Selfridge, C. A. Nicol and H. S. Vandiver, Proof of Fermat's last theorem for all prime exponents less than 4002, Proc. Nat. Acad. Sci. U.S.A. 41 (1955) 970-973; MR0072892 (17,348a).
[11] C. L. Siegel, Zu zwei Bemerkungen Kummers, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Klasse (1964) 51-57; also in Gesammelte Abhandlungen, v. 3, ed. K. Chandrasekharan and H. Maass, Springer-Verlag, 1966, pp. 436-442; MR0163899 (29 \#1198).
[12] W. Johnson, Irregular primes and cyclotomic invariants, Math. Comp. 29 (1975) 113-120; MR0376606 (51 \#12781).
[13] S. S. Wagstaff, The irregular primes to 125000, Math. Comp. 32 (1978) 583-591; MR0491465 (58 \#10711).
[14] B. Kellner, On asymptotic constants related to products of Bernoulli numbers and factorials, Integers 9 (2009) 83-106; math.NT/0604505; MR2506140.
[15] S. R. Finch, Minkowski-Siegel mass constants, unpublished note (2005).

[^0]: ${ }^{0}$ Copyright © 2007 by Steven R. Finch. All rights reserved.

