Radii in Geometric Function Theory

Steven Finch

January 5, 2004
First, we talk about geometry. A region $R \subseteq \mathbb{C}$ is convex if, for any two points $p, q \in R$, the line segment $p q \subseteq R$. A region $R \subseteq \mathbb{C}$ is starlike with respect to the origin if $0 \in R$ and if, for any point $p \in R$, the line segment $0 p \subseteq R$.

Next, we talk about functions. A complex analytic function f defined on an open region is univalent (or schlicht) if f is one-to-one; that is, $f(z)=f(w)$ if and only if $z=w$. Let

$$
\begin{gathered}
D=\{z:|z|<1\} \quad \text { (the open disk of radius 1), } \\
E=\{z: 0<|z|<1\} \quad \text { (the open punctured disk) }, \\
S=\left\{\text { univalent } f \text { on } D \text { with } f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}\right\}, \\
\Sigma=\left\{\text { univalent } f \text { on } E \text { with } f(z)=\frac{1}{z}+\sum_{n=0}^{\infty} b_{n} z^{n}\right\} .
\end{gathered}
$$

Geometry and functions now come together. The various subclasses of S include

$$
\begin{aligned}
C V & =\{f \in S: f(D) \text { is convex }\} \\
& =\left\{f \in S: \operatorname{Re}\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0 \text { for all } z \in D\right\}
\end{aligned}
$$

the class of convex functions on D, and

$$
\begin{aligned}
S T & =\{f \in S: f(D) \text { is starlike with respect to } 0\} \\
& =\left\{f \in S: \operatorname{Re}\left(z \frac{f^{\prime}(z)}{f(z)}\right)>0 \text { for all } z \in D\right\},
\end{aligned}
$$

the class of starlike functions on D. We will mostly discuss S (the analytic case), but will mention Σ (the meromorphic case) occasionally in the following [1, 2, 3, 4, 5].

[^0]0.1. Radius of Convexity. Define $D_{r}=\{z:|z|<r\}$, the open disk of radius r, for each $r>0$. For each $f \in S$, let $r(f)$ be the supremum of all numbers r such that $f\left(D_{r}\right)$ is convex. The radius of convexity for S is [1]
$$
\rho_{c v}(S)=\inf _{f \in S} r(f)=2-\sqrt{3}=0.2679491924 \ldots
$$
and is achieved by the Koebe function $f(z)=z(1-z)^{-2}$. This fact was first proved by Nevanlinna [6]. Generalization of $\rho_{c v}$ to any subclass of S gives rise to some interesting optimization problems. Trivially we have
$$
\rho_{c v}(C V)=1, \quad \rho_{c v}(S T)=2-\sqrt{3}
$$
(the latter follows since the Koebe function is starlike). Define, however, the special class of starlike functions of order α :
$$
S_{\alpha}^{*}=\left\{f \in S: \operatorname{Re}\left(z \frac{f^{\prime}(z)}{f(z)}\right)>\alpha \text { for all } z \in D\right\}
$$

Zmorovic [7], extending work in [8, 9, 10], proved that

$$
\rho_{c v}\left(S_{\alpha}^{*}\right)=\left\{\begin{array}{cc}
\frac{1}{2-3 \alpha+\sqrt{(1-\alpha)(3-5 \alpha)}} & \text { if } 0 \leq \alpha<\alpha_{0} \\
\left(\frac{5 \alpha-1}{4 \alpha^{2}-\alpha+1+4 \alpha \sqrt{\alpha^{2}-3 \alpha+2}}\right)^{\frac{1}{2}} & \text { if } \alpha_{0} \leq \alpha<1
\end{array}\right.
$$

where $\alpha_{0}=0.3349596751 \ldots$ is the smallest positive zero of $20 \alpha^{4}-52 \alpha^{3}+15 \alpha^{2}+12 \alpha-4$. Note that $\rho_{c v}\left(S_{0}^{*}\right)=2-\sqrt{3}$, as expected.

We turn attention to the class Σ. Define $E_{r}=\{z: 0<|z|<r\}$ and, for $f \in \Sigma$, let $r(f)$ be the supremum of all numbers r such that the complement of $f\left(E_{r}\right)$ in \mathbb{C} is convex. Goluzin [5, 11] proved that

$$
\rho_{c v}(\Sigma)=\inf _{f \in \Sigma} r(f)=x=0.5600798519 \ldots
$$

where x is the unique positive solution of the equation

$$
\frac{E(x)}{K(x)}+\frac{x^{2}}{8}-\frac{7}{8}=0
$$

and $K(x), E(x)$ are complete elliptic integrals of the first and second kind [12]. Letting

$$
\Sigma_{\beta}^{*}=\left\{f \in \Sigma: \operatorname{Re}\left(z \frac{f^{\prime}(z)}{f(z)}\right)<-\beta \text { for all } z \in E\right\}
$$

we also have $[7,9,11,13,14]$

$$
\rho_{c v}\left(\Sigma_{\beta}^{*}\right)=\left\{\begin{array}{cl}
\left(\frac{4 \beta-5+4 \sqrt{\beta^{2}-\beta+1}}{8 \beta-3}\right)^{\frac{1}{2}} & \text { if } 0 \leq \beta<\beta_{0} \\
\frac{1}{\beta+\sqrt{(1-\beta)(3 \beta-1)}} & \text { if } \beta_{0} \leq \beta<1
\end{array}\right.
$$

where $\beta_{0}=0.8673407553 \ldots$ is the largest positive zero of $12 \beta^{4}-28 \beta^{3}+33 \beta^{2}-20 \beta+4$. Note here that $\rho_{c v}\left(\Sigma_{0}^{*}\right)=1 / \sqrt{3}=0.577 \ldots>0.560 \ldots=x$. In this case, the extremal function is not starlike, which accounts for the strict inequality.
0.2. Radius of Starlikeness. For each $f \in S$, let $r(f)$ be the supremum of all numbers r such that $f\left(D_{r}\right)$ is starlike with respect to the origin. The radius of starlikeness for S is [1]

$$
\rho_{s t}(S)=\inf _{f \in S} r(f)=\frac{1-e^{-\pi / 2}}{1+e^{-\pi / 2}}=\tanh \left(\frac{\pi}{4}\right)=0.6557942026 \ldots
$$

and this fact was first discovered by Grunsky [15].
Goluzin [5, 16] found several interesting generalizations. Define a region $R \subseteq \mathbb{C}$ to be n-starlike with respect to the origin if $0 \in R$ and if every point of R can be connected with 0 by a piecewise linear curve that lies entirely in R and that consists of no more than n line segments. Let δ_{n} be the supremum of all r such that an arbitrary $f \in S$ maps D_{r} onto an n-starlike region with respect to 0 . Then

$$
\tanh \left(\frac{\pi}{4}\right)=\delta_{1} \leq \delta_{2} \leq \delta_{3} \leq \cdots, \quad \delta_{n} \geq \tanh \left(\frac{n \pi}{4}\right)
$$

but values for $\delta_{n}, n \geq 2$, are unknown. See also [17, 18].
Likewise, let ϵ_{n} be the supremum of all r such that an arbitrary $f \in \Sigma$ maps E_{r} onto a region, the complement of which is n-starlike with respect to 0 . Then

$$
0.85<\epsilon_{1}, \quad 1-1.11 \exp \left(\frac{-n \pi}{2}\right)<\epsilon_{n} \quad \text { for all } n>1
$$

An exact expression for ϵ_{1} would be good to see someday.
0.3. Radius of Close-to-Convexity. A region $R \subseteq \mathbb{C}$ is close-to-convex (or linearly accessible) if its complement is a union of closed half-lines such that the corresponding open half-lines are pairwise disjoint. Any starlike region is close-toconvex. A half-annulus is also close-to-convex, but this property fails for any larger subsection of an annulus.

An analytic function $f: D \rightarrow \mathbb{C}$ is close-to-convex if $f(D)$ is close-to-convex. Equivalently, f is close-to-convex if there is a convex function $g: D \rightarrow \mathbb{C}$ such that $\operatorname{Re}\left(f^{\prime}(z) / g^{\prime}(z)\right)>0$ for all $z \in D[1,19,20,21,22,23,24,25]$. It can be shown that every close-to-convex function is univalent.

Define

$$
\begin{aligned}
& C C=\{f \in S: f(D) \text { is close-to-convex }\} \\
& =\left\{f \in S: \begin{array}{r}
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re}\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right) d \theta>-\pi, \text { where } z=r e^{i \theta}, \\
\quad \text { for each } 0<r<1 \text { and each pair } 0<\theta_{1}<\theta_{2}<2 \pi
\end{array}\right\} .
\end{aligned}
$$

Let $\rho_{c c}(S)$ be the supremum of all r such that an arbitrary $f \in S$ maps D_{r} onto a close-to-convex region. Krzyz [26] determined that

$$
\rho_{c c}(S)=y=0.8098139153 \ldots
$$

where y is the unique real solution of the equation

$$
2 \arctan \left(\frac{\kappa(y)}{\lambda(y)}\right)+\ln \left(1+\lambda(y)^{2}\right)-2 \ln \left(\frac{2 y}{1-y^{2}}\right)=0
$$

in the interval $0<y<1, \kappa(y)=\left(1+y^{2}\right) /\left(1-y^{2}\right)$, and $\lambda=\lambda(y)$ is the unique real solution of the equation

$$
\lambda^{3}-\kappa(y) \lambda^{2}+\kappa(y)^{2} \lambda-\kappa(y)=0 .
$$

Sizuk [27] extended this result to the class of close-to-convex functions of order γ.
0.4. Radius of Convexity in One Direction. A region $R \subseteq \mathbb{C}$ is convex in the direction of the imaginary axis if, for every vertical line L, the set $L \cap R$ is either empty or connected. Any region that is convex in one direction can be rotated so that it is convex in the imaginary direction [3, 28, 29].

Define

$$
C D=\{f \in S: f(D) \text { is convex in the imaginary direction }\}
$$

and let $\rho_{c d}(S)$ be the supremum of all numbers r such that an arbitrary $f \in S$ maps D_{r} onto a region that is convex in the imaginary direction. Umezawa [30] and Goodman \& Saff [31] proved that

$$
0.394 \ldots=4-\sqrt{13} \leq \rho_{c d}(S) \leq \sqrt{2}-1=0.414 \ldots
$$

The exact value of this constant is unknown.
A subclass of $C D$ was considered by Hengartner \& Schober [32]:

$$
\left\{f \in S: \operatorname{Re}\left(\left(1-z^{2}\right) f^{\prime}(z)\right) \geq 0 \text { for all } z \in D\right\}
$$

but we omit details. See also [33, 34].
0.5. Radius of Majorization. Let $f: D \rightarrow \mathbb{C}$ be analytic with $f(0)=0$ and $f^{\prime}(0) \geq 0$. Let $F \in S$. The function f is subordinate to F, written $f \preceq F$, if $f\left(D_{r}\right) \subseteq F\left(D_{r}\right)$ for all $0<r<1[1,35]$.

Shah [36, 37], verifying conjectures of Goluzin [5, 38], proved that if $f \preceq F$, then

$$
\begin{gathered}
|f(z)| \leq|F(z)| \quad \text { for all }|z| \leq \frac{1}{2}(3-\sqrt{5})=0.3819660112 \ldots \\
\left|f^{\prime}(z)\right| \leq\left|F^{\prime}(z)\right| \quad \text { for all }|z| \leq 3-2 \sqrt{2}=0.1715728752 \ldots
\end{gathered}
$$

Both of these radii are best possible. If we further assume that f is univalent and $f^{\prime}(0)>0$, then $[5,39]$

$$
|f(z)| \leq|F(z)| \quad \text { for all }|z| \leq u=0.3908507887 \ldots
$$

where u is the unique real solution of

$$
\ln \left(\frac{1+u}{1-u}\right)+2 \arctan (u)=\frac{\pi}{2}
$$

Again, this radius of majorization is best possible. Problems as such (subordination implies majorization) were first examined by Biernacki [40].

Converse problems (majorization implies subordination) were studied by Lewandowski [41]. Under the same conditions as earlier, if $|f(z)| \leq|F(z)|$ for all $z \in D$ and f is not necessarily univalent, then $f \preceq F$ in the disk D_{v}, where $0.21<v<0.29$. The exact value of v is unknown. If f is assumed to be univalent, then the constant $u=0.390 \ldots$ arises again [42, 43].
0.6. Radius of Zeroness. Let $\rho_{N}(\Sigma)$ be the supremum of all numbers r such that an arbitrary $f \in \Sigma$ never vanishes on the punctured disk E_{r}. Goluzin [16] proved that $0.86<\rho_{N}(\Sigma) \leq \sqrt{3} / 2<0.867$, but a subsequent theorem of his [5, 44] implies that $\rho_{N}(\Sigma)=\xi=0.8649789576 \ldots$, where ξ is the unique positive solution of the equation

$$
\frac{E(\xi)}{K(\xi)}+\frac{\xi^{2}}{4}-\frac{3}{4}=0
$$

This is quite similar to the equation prescribed earlier for the radius of convexity $\rho_{c v}(\Sigma)$.

Given an analytic function f, we may likewise define $\rho_{N}(f)$ to be the supremum of all numbers r such that f, when restricted to E_{r}, is never zero. For example,

$$
\rho_{N}(f)=2\left|z_{0}\right| \quad \text { for } f(z)=z-\frac{1}{2 z_{0}} z^{2} \quad \text { (a quadratic function) }
$$

and

$$
\rho_{N}(f)=2 \pi \quad \text { for } f(z)=\exp (z)-1 \quad \text { (the exponential function). }
$$

0.7. Radius of Univalence. Given an analytic function f, define the radius of univalence of f to be the supremum of all numbers r such that f, when restricted to the disk D_{r}, is univalent. Let us first consider the case of polynomials. We clearly have

$$
\rho_{s}(f)=\left|z_{0}\right| \quad \text { for } f(z)=z-\frac{1}{2 z_{0}} z^{2}
$$

in the quadratic case. Kakeya's theorem [45, 46, 47] provides that

$$
\sin \left(\frac{\pi}{n}\right) \leq \frac{\rho_{s}(f)}{\left|z_{0}\right|} \leq 1 \quad \text { for } f(z)=z+\sum_{k=2}^{n} a_{k} z^{k}
$$

in the general case, where $n \geq 2$ and $z_{0} \neq 0$ is the zero of $f^{\prime}(z)$ of smallest modulus. These bounds are sharp.

Now, let us consider the case of transcendental functions. We have

$$
\rho_{s}(f)=\pi \quad \text { for } f(z)=\exp (z)-1
$$

as is well-known (although $f^{\prime}(z)$ never vanishes); [48]

$$
\rho_{s}(f)=1.5748375891 \ldots \quad \text { for } f(z)=\operatorname{erf}(z)
$$

corresponding to the smallest modulus, of points z not on the x-axis, for which $\operatorname{erf}(z)$ is real (see [49] for definition); [50, 51]

$$
\rho_{s}(f)=0.9241388730 \ldots \quad \text { for } f(z)=\exp \left(z^{2}\right) \operatorname{erf}(z)
$$

corresponding to the unique positive solution of $\sqrt{\pi} y \operatorname{Im}(f(i y))=1$; [52, 53, 54]

$$
\rho_{s}(f)=p_{\nu, 1} \quad \text { for } f(z)=z^{1-\nu} J_{\nu}(z), \nu>-1,
$$

corresponding to the smallest positive zero of $f^{\prime}(z)$ (see [55] for numerical values); [56]

$$
\rho_{s}(f)=0.5040830082 \ldots \quad \text { for } f(z)=1 / \Gamma(z)
$$

corresponding to the smallest positive zero of $\Gamma^{\prime}(-z)$; and [57]

$$
\rho_{s}(f)=0.4616321449 \ldots \quad \text { for } f(z)=\Gamma(z+1)
$$

corresponding to the smallest positive zero of $\Gamma^{\prime}(z+1)$. See also [58].
We digress briefly to other radii. For $f(z)=\exp (z)-1$, it is known that $[59,60]$

$$
\rho_{c v}(f)=1, \quad \rho_{s t}(f)=2.8329700604 \ldots
$$

and the latter corresponds to $\sqrt{1+\eta^{2}}$, where η is the smallest positive solution of the equation

$$
\eta \sin (\eta)+\cos (\eta)=\frac{1}{e}
$$

See also [61, 62].
0.8. Sums and Products. Here are two procedures for combining univalent functions:

$$
\begin{gathered}
S+S=\{h: h(z)=t f(z)+(1-t) g(z) \text { for some } f, g \in S \text { and } 0 \leq t \leq 1\}, \\
S \cdot S=\left\{h: h(z)=f(z)^{t} g(z)^{1-t} \text { for some } f, g \in S \text { and } 0 \leq t \leq 1\right\} .
\end{gathered}
$$

On the one hand, MacGregor [63] demonstrated that

$$
\begin{gathered}
\rho_{s}(S+S)=\sin \left(\frac{\pi}{8}\right)=\frac{1}{2} \sqrt{2-\sqrt{2}}=0.3826834323 \ldots \\
\rho_{s}(C V+C V)=\frac{\sqrt{2}}{2}=0.7071067811 \ldots
\end{gathered}
$$

and Robertson [64] showed that

$$
\rho_{s}(S T+S T)=\chi=0.4035150049 \ldots
$$

where χ is the unique positive zero of $\chi^{6}+5 \chi^{4}+79 \chi^{2}-13$. Further results appear in $[65,66,67]$. On the other hand, we have [3]

$$
C V \cdot C V \subseteq S T \cdot S T \subseteq S T, \quad C V \cdot C V \nsubseteq C V
$$

but virtually nothing is known about the class $S \cdot S$.
0.9. Derivatives and Integrals. Define the following classes of functions:

$$
\begin{aligned}
& T=\left\{f: f(z)=\frac{1}{2} \frac{d}{d z}(z g(z)) \text { for some } g \in S\right\}, \\
& U_{\alpha}=\left\{f: f(z)=\int_{0}^{z}\left(\frac{g(w)}{w}\right)^{\alpha} d w \text { for some } g \in S\right\} \text {, } \\
& V_{\beta}=\left\{f: f(z)=\int_{0}^{z} g^{\prime}(w)^{\beta} d w \text { for some } g \in S\right\},
\end{aligned}
$$

where α, β are complex numbers and hence the logarithmic branch is selected so that $f^{\prime}(0)=1$. Barnard [68, 69] and Pearce [70], building on Robinson [71], proved that

$$
0.49<\rho_{s}(T) \leq \frac{1}{2}, \quad 0.435<\rho_{s t}(T)<0.445
$$

In particular, these two constants must be distinct.

Biernacki [72] claimed that $\rho_{s}\left(U_{1}\right)=1$, but this was disproved by Krzyz \& Lewandowski [73]. It was later shown [74] that $0.91<\rho_{s}\left(U_{1}\right) \leq \tanh (\pi)<0.9963$. Let A denote the set of all complex numbers α for which $U_{\alpha} \subseteq S$. Kim \& Merkes [75] proved that $D_{1 / 4} \subseteq A \subseteq D_{1 / 2}$; we wonder whether $D_{r} \subseteq A$ for some $r>1 / 4$.

Trivially $\rho_{s}\left(V_{1}\right)=1$. Let B denote the set of all complex numbers β for which $V_{\beta} \subseteq S$. Royster [76] and Pfaltzgraff [77] proved that $D_{1 / 4} \subseteq B \subseteq D_{1 / 3} \cup\{1\}$; we again wonder whether $D_{r} \subseteq B$ for some $r>1 / 4$. See also [78, 79].

References

[1] P. L. Duren, Univalent Functions, Springer-Verlag, 1983, pp. 40-51, 95-98, 202209; MR0708494 (85j:30034).
[2] A. W. Goodman, Univalent Functions, v. 1, Mariner, 1983, pp. 119-121, 193197; MR0704183 (85j:30035a).
[3] A. W. Goodman, Univalent Functions, v. 2, Mariner, 1983, pp. 84-172; MR0704184 (85j:30035b).
[4] W. K. Hayman, Multivalent Functions, $2^{\text {nd }}$ ed., Cambridge Univ, Press, 1994, pp. 226-227; MR1310776 (96f:30003).
[5] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable (in Russian), $2^{\text {nd }}$ ed., Izdat. Akad. Nauk SSSR, 1966; Engl. transl. in Amer. Math. Soc. Transl., v. 26, 1969, pp. 136-140, 165-170, 375-379, 599, 643-644; MR0219714 (36 \#2793) and MR0247039 (40 \#308).
[6] R. Nevanlinna, Über die Eigenschaften einer analytischen Funktion in der Umgebung einer singulären Stelle oder Linie, Acta Soc. Sci. Fenn., v. 50 (1922) n. 5, 1-46.
[7] V. A. Zmorovic, On bounds of convexity for starlike functions of order α in the circle $|z|<1$ and in the circular region $0<|z|<1$ (in Russian), Mat. Sbornik 68 (1965) 518-526; Engl. transl. in Amer. Math. Soc. Transl., v. 80, 1969, pp. 203-213; MR0197712 (33 \#5875).
[8] T. H. MacGregor, The radius of convexity for starlike functions of order $\frac{1}{2}$, Proc. Amer. Math. Soc. 14 (1963) 71-76; MR0150282 (27 \#283).
[9] M. S. Robertson, Some radius of convexity problems, Michigan Math. J. 10 (1963) 231-236; MR0151596 (27 \#1580).
[10] A. Schild, On starlike functions of order α, Amer. J. Math. 87 (1965) 65-70; MR0174729 (30 \# 4929).
[11] M. S. Robertson, Extremal problems for analytic functions with positive real part and applications, Trans. Amer. Math. Soc. 106 (1963) 236-253; MR0142756 (26 \#325).
[12] S. R. Finch, Archimedes' constant: Elliptic functions, Mathematical Constants, Cambridge Univ. Press, 2003, p. 26.
[13] K. S. Padmanabhan, On the radius of convexity of a certain class of meromorphically starlike functions in the unit circle, Math. Z. 91 (1966) 308-313; MR0190319 (32 \#7732).
[14] V. Singh and R. M. Goel, On radii of convexity and starlikeness of some classes of functions, J. Math. Soc. Japan 23 (1971) 323-339; MR0281903 (43 \#7617).
[15] H. Grunsky, Zwei Bemerkungen zur konformen Abbildung, Jahresbericht Deutsch. Math.-Verein. 43 (1934) 140-143.
[16] G. M. Goluzin, Zur Theorie der schlichten konformen Abbildungen (in Russian), Mat. Sbornik 42 (1935) 169-190.
[17] S. Gelfer, Sur les bornes de l'étoilement et de la convexité des fonctions p-valentes (in Russian), Mat. Sbornik 16 (1945) 81-86; MR0012662 (7,55a).
[18] I. A. Aleksandrov, Domains of definition of some functionals on the class of functions univalent and regular in a circle (in Russian), Issledovaniia Po Sovremennym Problemam Teorii Funkcii Kompleksnovo Peremennovo, Gosudarstv. Izdat. Fiz.-Mat. Lit., 1960, pp. 39-45; MR0114928 (22 \#5744).
[19] M. Biernacki, Sur la représentation conforme des domaines linéairement accessibles, Prace Matematyczno-Fizyczne 44 (1936) 293-314.
[20] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952) 169185 (1953); MR0054711 (14,966e).
[21] Z. Lewandowski, Sur l'identité de certaines classes de fonctions univalentes. I, Ann. Univ. Mariae Curie-Sklodowska Sect. A 12 (1958) 131-146; MR0130354 (24 \#A217).
[22] Z. Lewandowski, Sur l'identité de certaines classes de fonctions univalentes. II, Ann. Univ. Mariae Curie-Sklodowska Sect. A 14 (1960) 19-46; MR0156958 (28 \#200).
[23] A. Bielecki and Z. Lewandowski, Sur un théorème concernant les fonctions univalentes linéairement accessibles de M. Biernacki, Ann. Polon. Math. 12 (1962) 61-63; MR0147636 (26 \#5151).
[24] V. A. Pohilevic, The equivalence of two classes of univalent functions (in Russian), Teor. Funkcii Funkcional Anal. i Prilozhen 8 (1969) 57-62; MR0262482 (41 \#7088).
[25] W. Koepf, On close-to-convex functions and linearly accessible domains, Complex Variables Theory Appl. 11 (1989) 269-279; MR1007662 (91f:30010).
[26] J. Krzyz, The radius of close-to-convexivity within the family of univalent functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962) 201-204; MR0148887 (26 \#6384).
[27] P. I. Sizuk, The radius of almost convexity of order α in a class of schlicht functions (in Russian), Mat. Zametki 20 (1976) 105-112; English transl. in Math. Notes 20 (1976) 616-620; MR0425103 (54 \#13061).
[28] L. Fejér, Neue Eigenschaften der Mittelwerte bei den Fourierreihen, J. London Math. Soc. 8 (19133) 53-62.
[29] M. S. Robertson, On the theory of univalent functions, Annals of Math. 37 (1936) 374-408.
[30] T. Umezawa, Analytic functions convex in one direction, J. Math. Soc. Japan 4 (1952) 194-202; MR0051313 (14,461b).
[31] A. W. Goodman and E. B. Saff, On univalent functions convex in one direction, Proc. Amer. Math. Soc. 73 (1979) 183-187; MR0516461 (80e:30006).
[32] W. Hengartner and G. Schober, Analytic functions close to mappings convex in one direction, Proc. Amer. Math. Soc. 28 (1971) 519-524; MR0277704 (43 \#3437).
[33] R. M. Goel, On a class of analytic functions, Indian J. Math. 17 (1975) 9-20; MR0603705 (82i:30011).
[34] M. Dorff, I. Naraniecka and J. Szynal, Doubly close-to-convex functions, J. Math. Anal. Appl. 290 (2004) 55-62; MR2032224.
[35] D. M. Campbell, Majorization-subordination theorems for locally univalent functions, Bull. Amer. Math. Soc. 78 (1972) 535-538; MR0299769 (45 \#8817).
[36] T.-S. Shah, Goluzin's number $(3-\sqrt{ } 5) / 2$ is the radius of superiority in subordination, Sci. Record 1 (1957) 219-222; MR0100094 (20 \#6530).
[37] T.-S. Shah, On the radius of superiority in subordination, Sci. Record 1 (1957) 329-333; MR0100095 (20 \#6531).
[38] G. M. Goluzin, On majorants of subordinate analytic functions. I (in Russian), Mat. Sbornik 29 (1951) 209-224; MR0043209 (13,223b).
[39] G. M. Goluzin, On majoration of subordinate analytic functions. II (in Russian), Mat. Sbornik 29 (1951) 593-602; MR0044644 (13,454d).
[40] M. Biernacki, Sur les fonctions univalentes, Mathematica (Cluj) 12 (1936) 49-64.
[41] Z. Lewandowski, Sur les majorantes des fonctions holomorphes dans le cercle $|z|<1$, Ann. Univ. Mariae Curie-Sklodowska Sect. A 15 (1961) 5-11; MR0142745 (26 \#314).
[42] Z. Lewandowski, Starlike majorants and subordination, Ann. Univ. Mariae Curie-Sklodowska Sect. A 15 (1961) 79-84; MR0138743 (25 \#2186).
[43] A. Bielecki and Z. Lewandowski, Sur certaines majorantes des fonctions holomorphes dans le cercle unité, Colloq. Math. 9 (1962) 299-303; MR0152650 (27 \#2625).
[44] G. M. Goluzin, Zur Theorie der schlichten Funktionen (in Russian), Mat. Sbornik 12 (1943) 48-55; MR0009053 (5,93f).
[45] S. Kakeya, On zeros of a polynomial and its derivatives, Tôhuku Math. J. 11 (1917) 5-16.
[46] L. N. Cakalov, On domains of univalence of certain classes of analytic functions (in Russian), Dokl. Akad. Nauk SSSR 132 (1960) 1277-1279; English transl. in Soviet Math. Dokl. 1 (1960) 781-783; MR0122965 (23 \#A296).
[47] A. Gluchoff and F. Hartmann, On a "much underestimated" paper of Alexander, Arch. Hist. Exact Sci. 55 (2000) 1-41; MR1780441 (2001i:30001).
[48] E. Kreyszig and J. Todd, The radius of univalence of the error function, Numer. Math. 1 (1959) 78-89; MR0101918 (21 \#724).
[49] S. R. Finch, Fransén-Robinson constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 262-264.
[50] E. Kreyszig and J. Todd, On the radius of univalence of the function $\exp z^{2} \int_{0}^{z} \exp \left(-t^{2}\right) d t$, Pacific J. Math. 9 (1959) 123-127; MR0107032 (21 \#5759).
[51] Y. L. Luke, The radius of univalence of the function $\exp z^{2} \int_{0}^{z} \exp \left(-t^{2}\right) d t$, Numer. Math. 3 (1961) 76-78; MR0118844 (22 \#9613).
[52] E. Kreyszig and J. Todd, The radius of univalence of Bessel functions. I, Illinois J. Math. 4 (1960) 143-149; MR0110827 (22 \#1695).
[53] R. K. Brown, Univalence of Bessel functions, Proc. Amer. Math. Soc. 11 (1960) 278-283; MR0111846 (22 \#2706).
[54] H. S. Wilf, The radius of univalence of certain entire functions, Illinois J. Math. 6 (1962) 242-244; MR0138734 (25 \#2177).
[55] S. R. Finch, Bessel function zeroes, unpublished note (2003).
[56] E. P. Merkes, M. S. Robertson and W. T. Scott, On products of starlike functions, Proc. Amer. Math. Soc. 13 (1962) 960-964; MR0142747 (26 \#316).
[57] E. P. Merkes and M. Salmassi, On univalence of certain infinite products, Complex Variables Theory Appl. 33 (1997) 207-215; MR1624939 (99b:30023).
[58] G. V. Kuzmina, Numerical determination of radii of univalence of analytic functions (in Russian), Trudy Mat. Inst. Steklov. 53 (1959) 192-235; MR0118841 (22 \#9610).
[59] P. T. Mocanu, Sur le rayon de stellarité des fonctions univalentes (in Romanian), Acad. R. P. Romêne Fil. Cluj Stud. Cerc. Mat. 11 (1960) 337-341; MR0146371 (26 \#3893).
[60] P. T. Mocanu, About the radius of starlikeness of the exponential function, Studia Univ. Babes-Bolyai Ser. Math.-Phys. 14 (1969) 35-40; MR0257339 (41 \#1990).
[61] D. Coman, The radius of starlikeness for the error function, Studia Univ. BabesBolyai Math. 36 (1991) 13-16; MR1280904.
[62] D. Coman and I. Tigan, The close-to-convexity radius of some functions, Studia Univ. Babes-Bolyai Math. 36 (1991) 61-65; MR1281977.
[63] T. H. MacGregor, The univalence of a linear combination of convex mappings, J. London Math. Soc. 44 (1969) 210-212; MR0236369 (38 \#4665).
[64] M. S. Robertson, The sum of univalent functions, Duke Math. J. 37 (1970) 411419; MR0264052 (41 \#8649).
[65] G. Labelle and Q. I. Rahman, Remarque sur la moyenne arithmétique de fonctions univalentes convexes, Canad. J. Math. 21 (1969) 977-981; MR0245775 (39 \#7081).
[66] D. M. Campbell, The radius of convexity of a linear combination of functions in $K, C V_{k}(\beta), S$ or U_{α}, Canad. J. Math. 25 (1973), 982-985; MR0328045 (48 \#6387).
[67] D. H. Hamilton and P. D. Tuan, Radius of starlikeness of convex combinations of univalent starlike functions, Proc. Amer. Math. Soc. 78 (1980) 56-58; MR0548084 (81f:30007).
[68] R. W. Barnard, On the radius of starlikeness of $(z f)^{\prime}$ for f univalent, Proc. Amer. Math. Soc. 53 (1975) 385-390; MR0382615 (52 \#3497).
[69] R. W. Barnard, On Robinson's $\frac{1}{2}$ conjecture, Proc. Amer. Math. Soc. 72 (1978) 135-139; MR0503547 (80j:30014).
[70] K. Pearce, A note on a problem of Robinson, Proc. Amer. Math. Soc. 89 (1983) 623-627; MR0718985 (85h:30014).
[71] R. M. Robinson, Univalent majorants, Trans. Amer. Math. Soc. 61 (1947) 1-35; MR0019114 (8,370e).
[72] M. Biernacki, Sur l'intégrale des fonctions univalentes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960) 29-34; MR0117341.
[73] J. Krzyz and Z. Lewandowski, On the integral of univalent functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1963) 447-448; MR0153830 (27 \#3791).
[74] Z. Lewandowski, On a problem of M. Biernacki, Ann. Univ. Mariae CurieSklodowska Sect. A 17 (1963) 39-41 (1965); MR0196055 (33 \#4249).
[75] Y. J. Kim and E. P. Merkes, On an integral of powers of a spirallike function, Kyungpook Math. J. 12 (1972) 249-252; MR0320295 (47 \#8834).
[76] W. C. Royster, On the univalence of a certain integral, Michigan Math. J. 12 (1965) 385-387; MR0183866 (32 \#1342).
[77] J. A. Pfaltzgraff, Univalence of the integral of $f^{\prime}(z)^{\lambda}$, Bull. London Math. Soc. 7 (1975) 254-256; MR0387570 (52 \#8410).
[78] D. V. Prokhorov and J. Szynal, On the radius of univalence for the integral of $f^{\prime}(z)^{\alpha}$, Ann. Univ. Mariae Curie-Sklodowska Sect. A 33 (1979) 157-163; MR0689595 (84c:30034).
[79] M. Dorff and J. Szynal, Linear invariance and integral operators of univalent functions, Demonstratio Math. 38 (2005) 47-57; MR2123720.

[^0]: ${ }^{0}$ Copyright © 2004 by Steven R. Finch. All rights reserved.

