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The following is a generalization of a process introduced by Hammersley [1, 2].

Fix three parameters   0, + ≥ 0 and − ≥ 0. Let  () denote a Poisson random
variable with mean . Baik & Rains [3] constructed a set of points  in the unit

square [0 1]× [0 1] according to three rules:

•  (2) points are selected uniformly inside (0 1)× (0 1)
•  (+) points are selected uniformly on the open bottom edge (0 1)× {0}
•  (−) points are selected uniformly on the open left edge {0} × (0 1).

These rules are independently executed. No points are selected from the closed top

and right edges, nor is the origin (0 0) allowed.

Consider any sequence of distinct points of the form

(0 0), (1 1), (2 2),  , ( ), (1 1)

where each ( ) ∈ , 1 ≤  ≤ , and  is arbitrary. For convenience, define

(0 0) = (0 0) and (+1 +1) = (1 1). Define such a point sequence to be an

up/right path if, for any  ≥ 1, we have −1 ≤  and −1 ≤ . Hence an

up/right path joins points of  in a continuous, piecewise linear manner with line

segments of slope , 0 ≤  ≤ ∞, attaching (−1 −1) and ( ) for all .
Of all up/right paths determined by , there is (at least) one with a maximum

number  of points. Call this number . (This is usually referred to as a length in

the literature. Of course, it also depends implicitly on + and −.) What can be
said about the probability distribution of  as →∞?
A special case of the above is the longest increasing subsequence problem [4],

achieved when + = − = 0. Its solution will be folded into the formulas we give

shortly for the general problem. This turns out to be related to the polynuclear

growth (PNG) model in physics due to Prähofer & Spohn [5, 6, 7], but we cannot

discuss such topics now.
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When 0 ≤ + ≤ 1 and 0 ≤ − ≤ 1 are fixed, the following formulas hold [3]:

lim
→∞P

µ
 − 2
12

≤ 

¶
=

⎧⎨⎩ GUE() if +  1 and −  1

GOE()
2 if + = 1, −  1 or +  1, − = 1

0() if + = 1 and − = 1

where the distribution functions GUE(), GOE() and 0() will be defined shortly.

Also, when +  1 or −  1, we have

lim
→∞P

µ
 − (+ −1)√

− −112
≤ 

¶
=

½
Φ() if + 6= −
Φ()2 if + = −

where  = max{+ −} and Φ() is the standard normal distribution function:

Φ() =
1√
2

Z
−∞

exp

µ
−

2

2

¶
 =

1

2
erf

µ
√
2

¶
+
1

2


We provide moments corresponding to these distributions (and more) in Tables 1 and

2; computations were performed by Prähofer [8]. The functions GUE(), GOE()

and GSE() were first discovered by Tracy & Widom [9, 10, 11], whereas 0() arose

more recently [3]. See Figure 1 for the associated density plots.

Table 1. Moments of GUE, GOE, GUE2 and GOE2

GUE
mean −17710868074
variance 08131947928 = (09017731382)2

skewness 02240842036

kurtosis 00934480876

GOE
mean −12065335745 = 223(−07600685240)
variance 16077810345 = (12679830576)2 = 243(06380483264)

skewness 02934645240

kurtosis 01652429384

 2
GUE

mean −12633181526
variance 06066887541 = (07789022750)2

skewness 03290093382

kurtosis 02254319482

 2
GOE

mean −04936399332
variance 12320144032 = (11099614422)2

skewness 03917246784

kurtosis 03086329720
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Table 2. Moments of GSE and Other Distributions
GSE

mean −23068848932 = 1√
2
(−32624279028)

variance 05177237207 = (07195302083)2 = 1
2
(10354474415) = 1

2
(10175693792)2

skewness 01655094943

kurtosis 00491951565

0
mean 0

variance 11503944782 = 223(07247031094) = (08104567006)−23

skewness 03594116897

kurtosis 02891570248

Φ Φ2

mean 0 1√

= 05641895835

variance 1 1− 1

= 06816901138 = (08256452711)2

skewness 0 4−
2(−1)32 = 01369487673

kurtosis 0
2(−3)
(−1)2 = 00617443154

Figure 1: The Tracy-Widom density functions, as well as  0
0().

Let () be the solution of the Painlevé II differential equation:

00() = 2()3 + () () ∼ − 1

2
√

−14 exp

µ
−2
3
32

¶
as →∞
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and define

() = −
∞Z


()   () = −
∞Z


() 

where

() = −
∞Z


()2 

The largest eigenvalue of a random complex Hermitian matrix, when generated ac-

cording to the Gaussian Unitary Ensemble (GUE) probability law and properly nor-

malized, has distribution function

GUE() = exp(− ()) (often denoted as the case  = 2).

More details appear in [0.1]. Replacing Hermitian matrices by real symmetric matri-

ces, we obtain the Gaussian Orthogonal Ensemble (GOE) and corresponding distri-

bution function

GOE() = exp

µ
−() +  ()

2

¶
(often denoted as the case  = 1).

Likewise, for the Gaussian Symplectic Ensemble (GSE), we have

GSE() = cosh

µ
()

2

¶
exp

µ
− ()

2

¶
(the case  = 4).

Define also

0() =
£
1− ¡+ 20() + 2()2¢ ()¤ exp (−2()−  ()) 

which does not yet seem to possess a random matrix interpretation. These formulas

serve as the computational basis for Tables 1 and 2, where skewness and kurtotis of

a random variable  are given as

Skew( ) =
E [( − E( ))3]
Var( )32

 Kurt( ) =
E [( − E( ))4]

Var( )2
− 3

For example, if +  1 and −  1, it follows that

lim
→∞

−13(E()− 2) = −17710868074 lim
→∞

−23Var() = 08131947928

which generalize results given earlier by Tracy &Widom and Baik, Deift & Johansson

[4]. If instead + = 1 and − = 1, we have

lim
→∞

−13Var() = 11503944782

which is called the Baik-Rains constant in [7].
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0.1. GUE/GOE/GSE. A random complex Hermitian  × matrix  belongs

to GUE if its (real) diagonal elements  and (complex) upper triangular elements

 = + are independently chosen from zero-mean Gaussian distributions with

Var() = 2 for 1 ≤  ≤  and Var() = Var() = 1 for 1 ≤    ≤  . Let 

denote the largest (real) eigenvalue of  and define the normalization [11]

̃ =
16(− 2√)



where  =
p
Var() =

√
2. Then the distribution of ̃ has the moments indi-

cated for GUE in Table 1. A related discussion, involving spacings between adjacent

eigenvalues of  and featuring connections to the Riemann hypothesis, appears in

[12].

A random real symmetric  ×  matrix  belongs to GOE if its diagonal ele-

ments  and upper triangular elements  are independently chosen from zero-mean

Gaussian distributions with Var() = 2 and Var() = 1. Let ̃ denote the largest

(real) eigenvalue of , normalized as before with  = 1 in this case. Then the

distribution of ̃ has the moments indicated for GOE in Table 1.

A complex Hermitian 2 × 2 matrix is said to be real quaternionic [13] if,

when viewed as an  × matrix  consisting of 2× 2 blocks, the diagonal blocks
 look like

 =

µ
 0

0 

¶
  ∈ R

and the upper triangular blocks  look like

 =

µ
 +  0 + 0
−0 + 0  − 

¶


A random real quaternionic matrix belongs to GSE if the nonzero distinct elements

of its diagonal and upper triangular blocks are independently chosen from zero-mean

Gaussian distributions with Var() = 2 and Var() = Var() = Var(0) =
Var(0) = 1. Let ̃ denote the largest (real) eigenvalue of , normalized as before
with  = 2 in this case. Then the distribution of ̃ has the moments indicated for

GSE in Table 2.

Here is an occurrence of GUE()
2: Define a signed permutation  to be a

bijection from {−− + 1    −2−1 1 2      − 1 } onto itself which satisfies
(−) = −() for all . Tracy & Widom [14, 15] proved that the length 2 of the

longest increasing subsequence of a random signed permutation  satisfies

lim
→∞P

Ã
2 − 2

√
2

223(2)16
≤ 

!
= GUE()

2
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A nice combinatorial application involving GSE() or GSE()
2, especially one as

simple as this, would be good to find.

Other applications appear in [11, 16, 17]. A -dimensional analog of Hammer-

sley’s original process (with + = − = 0) appears in [18]: Let  denote a set

of  () points selected uniformly inside the -dimensional unit cube and  de-

note the number of points in a maximal chain (totally ordered subset) of . De-

fine  to be limsup→∞E(). Then it is known that 2 = 2 and ∞ = , but

2363 ≤ 3 ≤ 2366, 2514 ≤ 4 ≤ 2521, 2583 ≤ 5 ≤ 2589 and 2607 ≤ 6 ≤ 2617.
We draw attention finally to the obvious identity [2]:

GSE() =
1

2

µ
GOE() +

GUE()

GOE()

¶
and wonder whether a similar identity relating 0 to other distributions can ever be

found.

0.2. Positive Definite/Indefinite. Among many possible questions, we ask for

the probability that a random× matrix, distributed according to GOE, is positive

definite. Since

P (indefinite) = 1− P (positive definite)− P (negative definite)
= 1− 2P (positive definite) 

the answer for indefinite matrices is clear once it is found for positive definite matrices.

The joint density for the  unordered (real) eigenvalues of a GOE matrix is [19]

1



Y
1≤≤

| − | · exp
Ã
−1
4

X
=1

2

!
where

 =  !(2)22(+1)4
Y
=1

Γ(2)

Γ(12)


A complicated formula for the density of the smallest eigenvalue follows, as do the

results in Table 3 for small  .

Table 3. Probabilities that an  × GOE Matrix is Positive Definite/Indefinite

 positive definite indefinite

1 12 = 05 0

2 12−√24 ≈ 01464 √
22 ≈ 07071

3 14− ¡√22¢−1 ≈ 00249 12 +
√
2−1 ≈ 09502

4 14−√216− (12)−1 ≈ 00025 12 +
√
28 + −1 ≈ 09951

5 18− ¡13 +√224¢−1 ≈ 00001 34 +
¡
23 +

√
212

¢
−1 ≈ 09997
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Consider now the quadratic form

(1 2     ) =
X

1≤≤≤


where the coefficients  form the upper triangular portion of a GOE matrix  .

Another way of saying  is indefinite is that  = 0 possesses a nonzero solution

in R . If we constrain the  to be integers, what is the probability that  = 0

possesses a nonzero solution in Z? The answer is 0 for 1 ≤  ≤ 3, is the same as
the real indefinite case for  ≥ 5, but is miraculously [20, 21]Ã

1

2
+

√
2

8
+
1



!Y


µ
1− 3

4(+ 1)2 (4 + 3 + 2 + + 1)

¶
= 09825845607

for  = 4. If we replace the GOE distribution by, say, a uniform distribution on

[−12 12] for each , then the probability becomes 097 instead. The structure

of the formula — leading coefficient multipled by prime product — is similar. While the

prime product 09874362482 remains identical, no closed-form expression is known

for the leading coefficient.
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