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The operators and  defined here were first introduced by Hardy & Littlewood

[1]. These tools are useful in several areas, e.g., harmonic analysis [2], but we disregard

the applications entirely and focus rather on properties of  and  in themselves.

0.1. One Dimension, Uncentered. For a locally integrable function  : R→ R,
define

()() = sup



1

− 

Z


|()|  .

In the Banach space (R), 1 ≤  ∞, with norm

|| || =
⎛⎝ ∞Z
−∞

|()| 
⎞⎠ 1



,

we examine the inequality

|| || ≤  · || ||
and ask for the best constant . (By “best”, we mean that  is the smallest positive

constant for which the inequality holds for all  .) It is known, for 1    ∞, that
 is the unique positive solution of [3]

(− 1) − −1 − 1 = 0 ;

hence, for example, we have 2 = 1 +
√
2 and lim→∞  = 1.

For  = 1, we examine instead the weak type (1 1) inequality

|{ : ()()  }| ≤  · 1

· || ||1

where || denotes the Lebesgue measure of a measurable set  ⊆ R and   0. In

this case, it is comparatively simple to prove that  = 2 is the best constant [4], valid

for all  and all .

0Copyright c° 2003 by Steven R. Finch. All rights reserved.

1



Hardy-Littlewood Maximal Inequalities 2

0.2. One Dimension, Centered. For a locally integrable function  : R → R,
define

()() = sup
0

1

2

+Z
−

|()|  .

Soria & Carbery [5, 6, 7] conjectured that  = 32 is the best constant for the weak

type (1 1) inequality

|{ : ()()  }| ≤  · 1

· || ||1 .

Aldaz [8] refuted this conjecture and showed that 3724 ≤  ≤ (9+√41)8. Further
progress was made in [9, 10] before Melas [4] established that

 =
11 +

√
61

12
= 15675208063

The impressive proof underlying this formula is far more complicated than the cor-

responding uncentered result [0.1].

For the strong type ( ) inequality with   1, Dror, Ganguli & Strichartz [7]

conjectured that the best constant  is given by

 =
( + 1)

−1
 + ( − 1) −1
2 −1



where   1 uniquely satisfiesµ
1− 



¶

( + 1)−
µ
1 +





¶

( − 1) = 0 ;

hence, for example, 2 =
4
√
27
√
2 and lim→∞  = 1. Grafakos, Montgomery-Smith

& Motrunich confirmed the truth of this formula for a special class of “bell-shaped”

functions, but expressed doubt that it holds for all  ∈ (R). The problem remains
unsolved.

0.3.  Dimensions, Uncentered. Let  ≥ 2. For a locally integrable function
 : R → R, define

()() = sup


1

||
Z


|()|  ,

where the supremum is taken over all compact cubes  with sides parallel to the

coordinate axes, subject only to  ∈ . For fixed 1   ∞, the best constant 
must grow at least exponentially as →∞ [3]. This result is also true if we replace

cubes by balls.
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0.4.  Dimensions, Centered. Let  ≥ 2. Define similarly

()() = sup


1

||
Z


|()|  ,

where we insist not only that  ∈ , but additionally that each cube  is centered

at . For the weak type (1 1) inequality, we have lower bounds on the best constants

, for example [12]

2 ≥
3 +
√
2
¡
2
√
3− 1¢

4


liminf
→∞

 ≥ 47
√
2

36


It would be good someday to know the exact values of these constants. Moreover,

we have 1  2 and  ≤ +1 for all  [13]. Stein & Strömberg [14] demonstrated

that  grows at most like ( ln()) and like () if we replace cubes by balls.

Let us return finally to the strong type ( ) setting. There exists a constant 

for which [14]

 ≤  · 

− 1 · 

for all  and . If we replace cubes by balls, then  can be further replaced by
√
.

Also, it is possible to write

 ≤  ()

for all , in the case of balls (but the expression  () may have to grow more rapidly

than ( − 1) as  → 1+). Thus, for fixed 1    ∞,  is bounded as  → ∞.
This result contrasts strikingly with the uncentered case [0.3].
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