Hardy-Littlewood Maximal Inequalities

Steven Finch

October 12, 2003
The operators M and N defined here were first introduced by Hardy \& Littlewood [1]. These tools are useful in several areas, e.g., harmonic analysis [2], but we disregard the applications entirely and focus rather on properties of M and N in themselves.
0.1. One Dimension, Uncentered. For a locally integrable function $f: \mathbb{R} \rightarrow \mathbb{R}$, define

$$
(M f)(x)=\sup _{\substack{a<x \\ b>x}} \frac{1}{b-a} \int_{a}^{b}|f(t)| d t .
$$

In the Banach space $L_{p}(\mathbb{R}), 1 \leq p<\infty$, with norm

$$
\|f\|_{p}=\left(\int_{-\infty}^{\infty}|f(t)|^{p} d t\right)^{\frac{1}{p}}
$$

we examine the inequality

$$
\|M f\|_{p} \leq c_{p} \cdot\|f\|_{p}
$$

and ask for the best constant c_{p}. (By "best", we mean that c_{p} is the smallest positive constant for which the inequality holds for all f.) It is known, for $1<p<\infty$, that c_{p} is the unique positive solution of [3]

$$
(p-1) x^{p}-p x^{p-1}-1=0 ;
$$

hence, for example, we have $c_{2}=1+\sqrt{2}$ and $\lim _{p \rightarrow \infty} c_{p}=1$.
For $p=1$, we examine instead the weak type $(1,1)$ inequality

$$
|\{x:(M f)(x)>\lambda\}| \leq C \cdot \frac{1}{\lambda} \cdot\|f\|_{1}
$$

where $|S|$ denotes the Lebesgue measure of a measurable set $S \subseteq \mathbb{R}$ and $\lambda>0$. In this case, it is comparatively simple to prove that $C=2$ is the best constant [4], valid for all f and all λ.

[^0]0.2. One Dimension, Centered. For a locally integrable function $f: \mathbb{R} \rightarrow \mathbb{R}$, define
$$
(N f)(x)=\sup _{h>0} \frac{1}{2 h} \int_{x-h}^{x+h}|f(t)| d t
$$

Soria \& Carbery [5, 6, 7] conjectured that $C=3 / 2$ is the best constant for the weak type (1,1) inequality

$$
|\{x:(N f)(x)>\lambda\}| \leq C \cdot \frac{1}{\lambda} \cdot\|f\|_{1}
$$

Aldaz [8] refuted this conjecture and showed that $37 / 24 \leq C \leq(9+\sqrt{41}) / 8$. Further progress was made in [9, 10] before Melas [4] established that

$$
C=\frac{11+\sqrt{61}}{12}=1.5675208063 \ldots
$$

The impressive proof underlying this formula is far more complicated than the corresponding uncentered result [0.1].

For the strong type (p, p) inequality with $p>1$, Dror, Ganguli \& Strichartz [7] conjectured that the best constant c_{p} is given by

$$
c_{p}=\frac{(y+1)^{\frac{p-1}{p}}+(y-1)^{\frac{p-1}{p}}}{2 y \frac{p-1}{p}}
$$

where $y>1$ uniquely satisfies

$$
\left(1-\frac{y}{p}\right)^{p}(y+1)-\left(1+\frac{y}{p}\right)^{p}(y-1)=0
$$

hence, for example, $c_{2}=\sqrt[4]{27} / \sqrt{2}$ and $\lim _{p \rightarrow \infty} c_{p}=1$. Grafakos, Montgomery-Smith \& Motrunich confirmed the truth of this formula for a special class of "bell-shaped" functions, but expressed doubt that it holds for all $f \in L_{p}(\mathbb{R})$. The problem remains unsolved.
0.3. n Dimensions, Uncentered. Let $n \geq 2$. For a locally integrable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, define

$$
\left(M_{n} f\right)(x)=\sup _{Q} \frac{1}{|Q|} \int_{Q}|f(t)| d t
$$

where the supremum is taken over all compact cubes Q with sides parallel to the coordinate axes, subject only to $x \in Q$. For fixed $1<p<\infty$, the best constant $c_{p, n}$ must grow at least exponentially as $n \rightarrow \infty$ [3]. This result is also true if we replace cubes by balls.
0.4. n Dimensions, Centered. Let $n \geq 2$. Define similarly

$$
\left(N_{n} f\right)(x)=\sup _{Q} \frac{1}{|Q|} \int_{Q}|f(t)| d t
$$

where we insist not only that $x \in Q$, but additionally that each cube Q is centered at x. For the weak type $(1,1)$ inequality, we have lower bounds on the best constants C_{n}, for example [12]

$$
\begin{gathered}
C_{2} \geq \frac{3+\sqrt{2}(2 \sqrt{3}-1)}{4}, \\
\liminf _{n \rightarrow \infty} C_{n} \geq \frac{47 \sqrt{2}}{36} .
\end{gathered}
$$

It would be good someday to know the exact values of these constants. Moreover, we have $C_{1}<C_{2}$ and $C_{n} \leq C_{n+1}$ for all n [13]. Stein \& Strömberg [14] demonstrated that C_{n} grows at most like $O(n \ln (n))$ and like $O(n)$ if we replace cubes by balls.

Let us return finally to the strong type (p, p) setting. There exists a constant K for which [14]

$$
c_{p, n} \leq K \cdot \frac{p}{p-1} \cdot n
$$

for all p and n. If we replace cubes by balls, then n can be further replaced by \sqrt{n}. Also, it is possible to write

$$
c_{p, n} \leq F(p)
$$

for all n, in the case of balls (but the expression $F(p)$ may have to grow more rapidly than $p /(p-1)$ as $\left.p \rightarrow 1^{+}\right)$. Thus, for fixed $1<p<\infty, c_{p, n}$ is bounded as $n \rightarrow \infty$. This result contrasts strikingly with the uncentered case [0.3].

References

[1] G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math. 54 (1930) 81-116; also in Collected Papers of G. H. Hardy, v. 2, Oxford Univ. Press, 1967, pp. 509-545.
[2] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986, pp. 76-84; MR0869816 (88e:42001).
[3] L. Grafakos and S. Montgomery-Smith, Best constants for uncentred maximal functions, Bull. London Math. Soc. 29 (1997) 60-64; math.FA/9412218; MR1416408 (98b:42031).
[4] A. D. Melas, The best constant for the centered Hardy-Littlewood maximal inequality, Annals of Math. 157 (2003) 647-688; MR1973058.
[5] D. A. Brannan and W. K. Hayman, Research problems in complex analysis, Bull. London Math. Soc. 21 (1989) 1-35; MR0967787 (89m:30001).
[6] M. Trinidad Menarguez and F. Soria, Weak type $(1,1)$ inequalities of maximal convolution operators, Rend. Circ. Mat. Palermo 41 (1992) 342-352; MR1230582 (94i:42025).
[7] R. Dror, S. Ganguli, and R. S. Strichartz, A search for best constants in the Hardy-Littlewood maximal theorem, J. Fourier Anal. Appl. 2 (1996) 473-486; MR1412064 (98b:42030).
[8] J. M. Aldaz, Remarks on the Hardy-Littlewood maximal function, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998) 1-9; MR1606325 (99b:42020).
[9] A. D. Melas, On the centered Hardy-Littlewood maximal operator, Trans. Amer. Math. Soc. 354 (2002) 3263-3273; MR1897399 (2003c:42021).
[10] A. D. Melas, On a covering problem related to the centered Hardy-Littlewood maximal inequality, Ark. Mat. 41 (2003) 341-361; MR2011925.
[11] L. Grafakos, S. Montgomery-Smith, and O. Motrunich, A sharp estimate for the Hardy-Littlewood maximal function, Studia Math. 134 (1999) 57-67; math.FA/9704211; MR1688215 (2000b:42015).
[12] J. M. Aldaz, A remark on the centered n-dimensional Hardy-Littlewood maximal function, Czechoslovak Math. J. 50 (2000) 103-112; MR1745465 (2002b:42024).
[13] J. M. Aldaz and J. L. Varona, Singular measures and convolution operators, Acta Math. Sinica (Engl. Ser.) 23 (2007) 487-490; math.CA/0207285; MR2292694.
[14] E. M. Stein and J.-O. Strömberg, Behavior of maximal functions in \mathbb{R}^{n} for large n, Ark. Mat. 21 (1983) 259-269; MR0727348 (86a:42027).

[^0]: ${ }^{0}$ Copyright © 2003 by Steven R. Finch. All rights reserved.

