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A bounded entire function is necessarily constant (by Liouville’s theorem). For
our purposes, let us therefore restrict attention to function f analytic on the upper
half plane Im(z) > 0. Define the H>-norm of f to be

[ /]loo = sup |f(x+iy)l.

Also, given a finite or infinite sequences W = {w;} of complex numbers, define its
[>*°-norm by
[[Wloo = sup |w;].
j=>1
We say that a sequence Z = {z;} of distinct complex numbers in the upper half
plane is an interpolating sequence if there exists an analytic function f for which
| f]]o0 < 00 and

[(z)=w;,  j=1,23,..

for each sequence W with ||W||,, < 0o. In words, Z has the property that, for any
bounded W, there must be a bounded analytic interpolant f taking z; to w; for all j.
There may be many such f. We wish to be as efficient as possible and define M(7)
to be the smallest constant (' such that

[ fllee < C-[IW][a

always; if 7 is not an interpolating sequence, define instead M (Z) = co. Carleson
[1, 2, 3, 4] proved that M(Z) < oo if and only if a uniform separation criterion

2;— 2

6 = inf H A

E>1 -
— itk

zj—Zk

is met.
Define the Blaschke product corresponding to Z by [4]

B =T

n>1

|22+ 1]z — 2,

2Z2+1 2-7%,
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with the understanding that, if z = i (the imaginary unit), then the left hand factor
is to be interpreted as 1. If Z is an interpolating sequence, then B is uniformly con-
vergent on compact subsets of the upper half plane and hence represents an analytic
function. Further, ||B||o = 1 and B vanishes only at the points z,. Let

Z— Zx

Z — Xk

so that we may write 6 = infg>1 |Br(zz)|. Also let z; = x; +iy;.

Beurling [5], Jones [6] and Havin |7] examined the problem of exhibiting an ex-
plicit formula for f. Nicolau, Ortega-Cerda & Seip [8] used this work as a basis for
estimating M (7). Define

dy;(y; + k) 1
|25 — Zx|? | Bj(25)]

O(7) = sup Z

k21 Y <Yk

U (Z) = sup — .
D) = L 2 BB ()]

Then, for every interpolating sequence Z in the upper half plane, we have

1<M<K 1<
27 (7)) — -

for constants k and A satisfying

2.2661... =

1.5707... = g A < 2 = 5.4365....

Can these bounds be improved? Also, can simpler expressions than ® or W for the
denominators be found?
An alternative definition of M(7) is related to Nevanlinna-Pick theory [4, 9, 10].
Let M,(Z) be the smallest constant C,, such that the matrix A = (a;) with
1 —ww
ajp=——"%  j=12..n k=12 ..
Zj — Rk
is nonnegative definite whenever ||[W||. < 1/C,,. The constant of interpolation M (7)
is thus M, (7) if Z consists of exactly n points and lim,, .o M,(7) if Z is infinite §].
We could alternatively restrict attention to functions f analytic on the unit disk
]z] < 1. Some relevant formulas in this new setting are
Zi— %
5 = inf [ | 2222

E>1
Ak

— ?
ZjRk — 1
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|2n] 2 — 2y
B(Z) = = 17
n>1 Zn RpRk —
1 —ww
— Fhadi - —
Qjp = 7T — > j—1,2,...,n, 1{7—1,2,...,7’1,.
1—ZjZk

Similar interpolation questions can be asked for the HP-norm on the unit disk (for

example):

1 2 1/p
i p

1fllp = sup (2— [lrwe)] cw)
0<r<1 v 5

where 1 < p < oo [4, 11]. It would be good to see results paralleling those in [8] for
p=2andp=1.
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