Constant of Interpolation

Steven Finch

April 5, 2005
A bounded entire function is necessarily constant (by Liouville's theorem). For our purposes, let us therefore restrict attention to function f analytic on the upper half plane $\operatorname{Im}(z)>0$. Define the H^{∞}-norm of f to be

$$
\|f\|_{\infty}=\sup _{y>0}|f(x+i y)| .
$$

Also, given a finite or infinite sequences $W=\left\{w_{j}\right\}$ of complex numbers, define its l^{∞}-norm by

$$
\|W\|_{\infty}=\sup _{j \geq 1}\left|w_{j}\right| .
$$

We say that a sequence $Z=\left\{z_{j}\right\}$ of distinct complex numbers in the upper half plane is an interpolating sequence if there exists an analytic function f for which $\|f\|_{\infty}<\infty$ and

$$
f\left(z_{j}\right)=w_{j}, \quad j=1,2,3, \ldots
$$

for each sequence W with $\|W\|_{\infty}<\infty$. In words, Z has the property that, for any bounded W, there must be a bounded analytic interpolant f taking z_{j} to w_{j} for all j. There may be many such f. We wish to be as efficient as possible and define $M(Z)$ to be the smallest constant C such that

$$
\|f\|_{\infty} \leq C \cdot\|W\|_{\infty}
$$

always; if Z is not an interpolating sequence, define instead $M(Z)=\infty$. Carleson $[1,2,3,4]$ proved that $M(Z)<\infty$ if and only if a uniform separation criterion

$$
\delta=\inf _{k \geq 1} \prod_{j \neq k}\left|\frac{z_{j}-z_{k}}{z_{j}-\bar{z}_{k}}\right|>0
$$

is met.
Define the Blaschke product corresponding to Z by [4]

$$
B(z)=\prod_{n \geq 1} \frac{\left|z_{n}^{2}+1\right|}{z_{n}^{2}+1} \frac{z-z_{n}}{z-\bar{z}_{n}}
$$

[^0]with the understanding that, if $z=i$ (the imaginary unit), then the left hand factor is to be interpreted as 1 . If Z is an interpolating sequence, then B is uniformly convergent on compact subsets of the upper half plane and hence represents an analytic function. Further, $\|B\|_{\infty}=1$ and B vanishes only at the points z_{n}. Let
$$
B_{k}(z)=\frac{z-\bar{z}_{k}}{z-z_{k}} B(z)
$$
so that we may write $\delta=\inf _{k \geq 1}\left|B_{k}\left(z_{k}\right)\right|$. Also let $z_{j}=x_{j}+i y_{j}$.
Beurling [5], Jones [6] and Havin [7] examined the problem of exhibiting an explicit formula for f. Nicolau, Ortega-Cerdà \& Seip [8] used this work as a basis for estimating $M(Z)$. Define
\[

$$
\begin{gathered}
\Phi(Z)=\sup _{k \geq 1} \sum_{y_{j} \leq y_{k}} \frac{4 y_{j}\left(y_{j}+y_{k}\right)}{\left|z_{j}-\bar{z}_{k}\right|^{2}} \frac{1}{\left|B_{j}\left(z_{j}\right)\right|}, \\
\Psi(Z)=\sup _{k \geq 1} \sum_{n \geq 1} \frac{4 y_{k} y_{n}}{\left|z_{k}-\bar{z}_{n}\right|^{2}} \frac{1}{\left|B_{n}\left(z_{n}\right)\right|}
\end{gathered}
$$
\]

Then, for every interpolating sequence Z in the upper half plane, we have

$$
\frac{1}{2} \leq \frac{M(Z)}{\Phi(Z)} \leq \kappa, \quad 1 \leq \frac{M(Z)}{\Psi(Z)} \leq \lambda
$$

for constants κ and λ satisfying

$$
\begin{gathered}
2.2661 \ldots=\frac{\pi}{2 \ln (2)} \leq \kappa \leq e=2.7182 \ldots \\
1.5707 \ldots=\frac{\pi}{2} \leq \lambda \leq 2 e=5.4365 \ldots
\end{gathered}
$$

Can these bounds be improved? Also, can simpler expressions than Φ or Ψ for the denominators be found?

An alternative definition of $M(Z)$ is related to Nevanlinna-Pick theory [4, 9, 10]. Let $M_{n}(Z)$ be the smallest constant C_{n} such that the matrix $A=\left(a_{j, k}\right)$ with

$$
a_{j, k}=\frac{1-\bar{w}_{j} w_{k}}{z_{j}-\bar{z}_{k}}, \quad j=1,2, \ldots, n, \quad k=1,2, \ldots, n
$$

is nonnegative definite whenever $\|W\|_{\infty}<1 / C_{n}$. The constant of interpolation $M(Z)$ is thus $M_{n}(Z)$ if Z consists of exactly n points and $\lim _{n \rightarrow \infty} M_{n}(Z)$ if Z is infinite [8].

We could alternatively restrict attention to functions f analytic on the unit disk $|z|<1$. Some relevant formulas in this new setting are

$$
\delta=\inf _{k \geq 1} \prod_{j \neq k}\left|\frac{z_{j}-z_{k}}{\bar{z}_{j} z_{k}-1}\right|
$$

$$
\begin{gathered}
B(z)=\prod_{n \geq 1} \frac{\left|z_{n}\right|}{z_{n}} \frac{z-z_{n}}{\bar{z}_{n} z-1}, \\
a_{j, k}=\frac{1-\bar{w}_{j} w_{k}}{1-\bar{z}_{j} z_{k}}, \quad j=1,2, \ldots, n, \quad k=1,2, \ldots, n .
\end{gathered}
$$

Similar interpolation questions can be asked for the H^{p}-norm on the unit disk (for example):

$$
\|f\|_{p}=\sup _{0<r<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p}
$$

where $1<p<\infty[4,11]$. It would be good to see results paralleling those in [8] for $p=2$ and $p=1$.

REFERENCES

[1] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958) 921-930; MR0117349 (22 \#8129).
[2] J. P. Earl, On the interpolation of bounded sequences by bounded functions, J. London Math. Soc. 2 (1970) 544-548; MR0284588 (44 \#1813).
[3] J. P. Earl, A note on bounded interpolation in the unit disc, J. London Math. Soc. 13 (1976) 419-423; MR0419773 (54 \#7791).
[4] J. B. Garnett, Bounded Analytic Functions, Academic Press, 1981, pp. 1-10, 50-57, 284-317; MR0628971 (83g:30037).
[5] L. Carleson, Interpolations by bounded analytic functions and the Corona problem, International Congress of Mathematicians, Proc. 1962 Stockholm conf., Inst. Mittag-Leffler, 1963, pp. 314-316; MR0176274 (31 \#549).
[6] P. W. Jones, L^{∞} estimates for the $\bar{\partial}$ problem in a half-plane, Acta Math. 150 (1983) 137-152; MR0697611 (84g:35135).
[7] V. P. Havin, Jones' interpolation formula, in P. Koosis, Introduction to H_{p} Spaces, $2^{\text {nd }}$ ed., Cambridge Univ. Press, 1998, pp. 263-270; MR1669574 (2000b:30052)
[8] A. Nicolau, J. Ortega-Cerdà and K. Seip, The constant of interpolation, Pacific J. Math. 213 (2004) 389-398; math.CV/0301334; MR2036925 (2004m:30061).
[9] J. E. McCarthy, Pick's theorem-what's the big deal? Amer. Math. Monthly 110 (2003) 36-45; MR1952746 (2003k:30055).
[10] R. A. Kortram, A new characterization of the unit ball of H^{2}, Proc. Amer. Math. Soc. 132 (2004) 127-133; MR2021255 (2004i:30031).
[11] H. S. Shapiro and A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math. 83 (1961) 513-532; MR0133446 (24 \#A3280).

[^0]: ${ }^{0}$ Copyright © 2005 by Steven R. Finch. All rights reserved.

