Injections, Surjections and More

Steven Finch

May 7, 2015
Let $I_{m, n}$ denote the set of all injections $\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$ where $m \leq n$. An element of $I_{m, n}$ can be thought of as a permutation on n symbols taken m at a time. We define $I_{0, n}$ to possess one element (the empty permutation) for convenience; therefore $[1,2,3]$

$$
\# I_{m, n}=\frac{n!}{(n-m)!}
$$

and

$$
\# \bigcup_{0 \leq m \leq n} I_{m, n}=\sum_{k=0}^{n} \frac{n!}{k!}= \begin{cases}\lfloor n!e\rfloor & \text { if } n>0 \\ 1 & \text { if } n=0\end{cases}
$$

where e is the natural logarithmic base [4]. In counting all injections, we treat extensions as distinct; for example, the function $f:\{1,2\} \rightarrow\{1,2\}$ with $f(x)=x$ is not the same as the function $g:\{1,2\} \rightarrow\{1,2,3\}$ with $g(x)=x$, nor is it the same as the function $h:\{1,2,3\} \rightarrow\{1,2,3\}$ with $h(x)=x$.

Let $J_{n, m}$ denote the set of all surjections $\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}$ where $n \geq m$. An element of $J_{n, m}$ can be thought of as an ordered m-tuple consisting of preimage blocks (m disjoint nonempty sets that cover n symbols). We define $J_{0,0}$ to possess one element (the empty tuple) for convenience; therefore $[5,6,7]$

$$
\# J_{n, m}=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}(m-j)^{n}=m!S_{n, m}
$$

and

$$
\# \bigcup_{0 \leq m \leq n} J_{n, m}=\frac{1}{2} \sum_{k=0}^{\infty} \frac{k^{n}}{2^{k}} \sim \frac{n!}{2}\left(\frac{1}{\ln (2)}\right)^{n+1} \sim \frac{n!}{2 \ln (2)}(1.4426950408 \ldots)^{n}
$$

as $n \rightarrow \infty$, where $S_{n, m}$ is a Stirling number of the second kind [8]. In counting all surjections, we treat extensions as distinct; for example, the preceding function f is not the same as the function $g:\{1,2,3\} \rightarrow\{1,2\}$ with $g(x)=x \bmod 2$, nor is it the same as the preceding function h.

[^0]Various refinements of surjections are available. An ℓ-surjection has the property that every value in the range $\{1, \ldots, m\}$ is taken with multiplicity at least ℓ. (The phrase "double surjection" was used in [6], while " 2 -surjection" meant something different.) Asymptotic counting results for 2-surjections, 3-surjections and 4 -surjections are

$$
\begin{aligned}
& \frac{n!}{(1+r) r}(0.8724532496 \ldots)^{n} \quad \text { where } \quad r=1.1461932206 \ldots \text { solves } e^{r}=2+r, \\
& \frac{n!}{\left(1+\frac{1}{2} r^{2}\right) r}(0.6377063010 \ldots)^{n} \quad \text { where } \quad r=1.5681199923 \ldots \text { solves } 2 e^{r}=4+2 r+r^{2}, \\
& \frac{n!}{\left(1+\frac{1}{6} r^{3}\right) r}(0.5060319662 \ldots)^{n} \quad \text { where } \quad r=1.9761597421 \ldots \text { solves } 6 e^{r}=12+6 r+3 r^{2}+r^{3}
\end{aligned}
$$

respectively (the numerical value within parentheses is $1 / r$). The formulas for $\ell=3$ and 4 are due to Kotesovec [5].

Another way of imagining a surjection is as a labeled clique, that is, a hierarchy on $\{1, \ldots, n\}$ in which vertical ordering is important but horizontal ordering is not. We illustrate $\# J_{3,1}=1$, \# J $J_{3,2}=6, \# J_{3,3}=6$ here:

If we remove labels, then just 4 hierarchies emerge:

$$
\overline{\underline{|*, *, *|}}, \quad \overline{\left\lvert\, \begin{array}{c}
* \\
*, *
\end{array}\right.}, \quad \overline{\left|\begin{array}{c}
*, * \\
*
\end{array}\right|}, \quad \underline{\left|\begin{array}{c}
* \\
* \\
*
\end{array}\right|}
$$

More generally [9], the number of unlabeled cliques on n integers is 2^{n}.
A labeled society on $\{1, \ldots, n\}$ is created by distributing the elements into cliques. The ordering of the cliques is not important. Let S_{n} denote the number of such societies and s_{n} denote the unlabeled analog. The cliques are visually separated by bars and (as before) hierarchy within a clique is indicated by the vertical
arrangement. We illustrate $S_{3}=23$ and $s_{3}=7$, omitting the 13 one-clique cases for the former and the 4 one-clique cases for the latter (which were already given):

More generally $[10,11,12]$,

$$
S_{n}=\left.\frac{d^{n}}{d x^{n}} \exp \left(\frac{1}{2-e^{x}}-1\right)\right|_{x=0}, \quad s_{n}=\left.\frac{1}{n!} \frac{d^{n}}{d x^{n}} \prod_{k=1}^{\infty} \frac{1}{\left(1-x^{k}\right)^{2^{k-1}}}\right|_{x=0}
$$

and

$$
S_{n} \sim C \frac{e^{\sqrt{2 n / \ln (2)}}}{n^{3 / 4} \ln (2)^{n}} n!, \quad s_{n} \sim \frac{c}{\sqrt{2 \pi}} \frac{e^{\sqrt{2 n}-1 / 4}}{n^{3 / 4}} 2^{n-3 / 4}
$$

as $n \rightarrow \infty$, where

$$
\begin{gathered}
C=\frac{1}{4 \sqrt{\pi}}\left(\frac{2}{e}\right)^{3 / 4}\left(\frac{e^{1 / \ln (2)}}{\ln (2)}\right)^{1 / 4}=(1038.9726974426 \ldots)^{-1 / 4}, \\
c=\exp \left(\sum_{j=2}^{\infty} \frac{1}{j\left(2^{j}-1\right)}\right)=1.3976490050 \ldots
\end{gathered}
$$

The constant c, overlooked in [10], was subsequently determined in [13].
Let us focus entirely on the labeled scenario henceforth. A clique is elitist if, given any two adjacent levels, the number of elements in the higher level never exceeds the number of elements in the lower level. Define R_{n} to be the number of elitist cliques on $\{1, \ldots, n\}$. Clearly $R_{2}=3$ and $R_{3}=10$. More generally $[9,12,14]$,

$$
R_{n}=\left.\frac{d^{n}}{d x^{n}} \prod_{k=1}^{\infty}\left(1-\frac{x^{k}}{k!}\right)^{-1}\right|_{x=0}
$$

and $R_{n} \sim B n!$ as $n \rightarrow \infty$, where

$$
B=\prod_{k=2}^{\infty}\left(1-\frac{1}{k!}\right)^{-1}=2.5294774720 \ldots
$$

Another interpretation involves multinomial coefficients [15]: for suitably large m,

$$
\begin{gathered}
\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{2}=\sum_{i} x_{i}^{2}+2 \sum_{i<j} x_{i} x_{j}, \\
\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{3}=\sum_{i} x_{i}^{3}+3 \sum_{i \neq j} x_{i} x_{j}^{2}+6 \sum_{i<j<k} x_{i} x_{j} x_{k}, \\
\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{4}=\sum_{i} x_{i}^{4}+4 \sum_{i \neq j} x_{i} x_{j}^{3}+6 \sum_{i<j} x_{i}^{2} x_{j}^{2}+12 \sum_{\substack{i<j, i \neq k, j \neq k}} x_{i} x_{j} x_{k}^{2}+24 \sum_{i<j<k<\ell} x_{i} x_{j} x_{k} x_{\ell}
\end{gathered}
$$

hence $R_{2}=1+2, R_{3}=1+3+6$ and $R_{4}=1+4+6+12+24$.
Finally, a society is elitist if all of its cliques are elitist. Define Q_{n} to be the number of elitist societies on $\{1, \ldots, n\}$. Clearly $Q_{2}=4$ and $Q_{3}=20$. More generally,

$$
Q_{n}=\left.\frac{d^{n}}{d x^{n}} \exp \left(\prod_{k=1}^{\infty}\left(1-\frac{x^{k}}{k!}\right)^{-1}-1\right)\right|_{x=0}
$$

but an asymptotic expression for Q_{n} appears to be open.
In closing, we give a sequence $[9,16]$

$$
p_{n}=\left.\frac{1}{n!} \frac{d^{n}}{d x^{n}}\left(2-\prod_{k=1}^{\infty}\left(1-x^{k}\right)^{-1}\right)^{-1}\right|_{x=0}=\left.\frac{1}{n!} \frac{d^{n}}{d x^{n}} \frac{1}{f(x)}\right|_{x=0}
$$

which arises from unlabeled cliques on set partitions rather than integers. It is quite similar to the sequence 2^{n} mentioned earlier. We illustrate $p_{3}=8$ here:

It is easily shown that $p_{n} \sim a b^{n}$ where $b=2.6983291064 \ldots$ is the unique positive solution of the equation $f(1 / y)=0$ and

$$
a=\frac{-b}{f^{\prime}(1 / b)}=0.4141137931 \ldots
$$

The fit is excellent. Moreover, the occurrence of the Dedekind eta function [17] is unexpected. Replacing $f(x)$ by $f(x)-1$ spawns another (alternating in sign) integer sequence [16]; we wonder whether this perturbation possesses a combinatorial interpretation. Societies (labeled or not, elitist or not) can also be imposed in the new partitional framework and more asymptotic results await discovery.

References

[1] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000522 and A007526.
[2] L. Halbeisen and N. Hungerbühler, Number theoretic aspects of a combinatorial function. Notes Number Theory Discrete Math., v. 5 (1999) n. 4, 138150; http://user.math.uzh.ch/halbeisen/publications/pdf/seq.pdf; MR1764301 (2001c:11029).
[3] M. Hassani, Counting and computing by e, arXiv:math/0606613.
[4] S. R. Finch, Natural logarithmic base, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 12-17.
[5] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000670, A032032, A102233, and A232475.
[6] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, pp. 106-110, 244-245, 259-261, 335; http://algo.inria.fr/flajolet/Publications/AnaCombi/; MR2483235 (2010h:05005).
[7] H. S. Wilf, generatingfunctionology, $2^{\text {nd }}$ ed., Academic Press, 1994, pp. 175-176; http://www.math.upenn.edu/~wilf/DownldGF.html; MR1277813 (95a:05002).
[8] S. R. Finch, Lengyel's constant: Stirling partition numbers, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 316-317.
[9] T. Wieder, The number of certain rankings and hierarchies formed from labeled or unlabeled elements and sets, Appl. Math. Sci. (Ruse) 3 (2009) 2707-2724; http://www.m-hikari.com/ams/; MR2563113 (2010m:05025).
[10] N. J. A. Sloane and T. Wieder, The number of hierarchical orderings, Order 21 (2004) 83-89; arXiv:math/0307064; MR2128036 (2005k:06012).
[11] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, p. 571; http://algo.inria.fr/flajolet/Publications/AnaCombi/; MR2483235 (2010h:05005).
[12] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A005651, A034691, A034899, A075729, and A143463.
[13] V. Kotesovec, Asymptotics of sequence A034691, unpublished note (2014), http://oeis.org/A034691/a034691_1.pdf.
[14] A. Knopfmacher, A. M. Odlyzko, B. Pittel, L. B. Richmond, D. Stark, G. Szekeres and N. C. Wormald, The asymptotic number of set partitions with unequal block sizes, Elec. J. Combin. 6 (1999) R2; MR1663723 (2000b:05018).
[15] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Reidel, 1974, p. 126; MR0460128 (57 \#124).
[16] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A055887 and A082531.
[17] S. R. Finch, Dedekind eta products, unpublished note (2007).

[^0]: ${ }^{0}$ Copyright © 2015 by Steven R. Finch. All rights reserved.

