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As in our earlier essay [1], define T": [0,1] — [0, 1] by

{l} if0<z <1,
0 fxz=0

where {{} = £ — |£] denotes the fractional part of . Previously, we examined
the moments of 77X and of In(77X), where X is a random variable in [0,1]. The
distribution of X was assumed to be either uniform or Gauss-Kuzmin.

What can be said about the moments of |1/77X | and of In |1/77X |? An an-
swer to this question helps in determining the asymptotic distribution of the first n
continued fraction “digits”, corresponding to uniformly distributed X as n — oc.

0.1. Uniform Distribution. Let v denote the Euler-Mascheroni constant, ¢ de-
note the digamma function, and ¢ denote the Riemann zeta function. If X is a
random variable following the uniform distribution on [0, 1], then
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as N — oo, via the substitutions y = 1/x, 2 = y —n and w = 1/z. Hence both
expected values are infinite. By contrast,

o ([3]) - el £ [0 5

(Liiroth analog of Khintchine’s constant [2]),
12 =< In(n)? =
In|—| | =) —>==>) (-1)¥"(k
E<HM ) S S un

1
Var <ln bJ) — 1.1759638742... = (1.0844186803...)%,

E(ln {%J) = iilngzm) <1+1nm_1—|—n(1n+1))

- gln(m) =) (0 (142 +7)
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= 1.06479...,
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We shall not attempt to compute the cross-moments
1 1 1 1
o(u|x] wlrx]) o o (n]e]n]mx))
and leave these as open problems.

0.2. Gauss-Kuzmin Distribution. If X is a random variable following the
Gauss-Kuzmin distribution on [0, 1], then

oo n+1

E{ J B ln}21/yy+1 112),;Vn/ﬁdy
1

~ B n<ann (1 + m> ~ ﬁ In(N) ~ E {%J

as N — oo. Hence both expected values are infinite. By contrast,

B (m &D _ hiz) gln(n) In (1 + m)
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0.9878490568 n(K) E(ﬂTXD

(Khintchine’s constant [2]),

o (n[5]) = st S (i)
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Var (ln {XJ) = 1.4094310970... = (1.1871946331...)° = Var (ln {TXJ)
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The joint expectation

simplifies to

1 oo
In(2) nz:;

and can be numerically evaluated via suitable generalization of Kummer’s method
[3]. It follows that

1 1
P <ln {XJ ,In {ﬁJ> = —0.0876526887... = r;.

0.3. Variance of Sample Mean. The sample mean

1 (X) :% 2 In {TJ’lXJ

e}
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i) (14 TG )

m=

0<j<n
satisfies
lim E (j1,,(X)) = In(K) = 0.9878490568... = 1,
lim n Var (,,(X)) = lim % Y Cov(In(TVX),In(T*X)) = o”
b

Q

1 2T1
v (] £]) (1422 ) =1

for a wide variety of initial distributions for X on [0, 1]. (No negative sign is introduced
this time in the definition of f,, (X), unlike before.)

0.4. Continued Fraction Digits. If ay, as, ag, ... denote the partial denomina-
tors (digits) of X, then it is clear that

In ((alagag---an)%) :% > In {leXJ

0<j<n

(no nonzero error ¢, is present here). Baladi & Vallée [4] proved that the following
Central Limit Theorem is true:
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and Lhote [5] computed that
o? =1.2297301427... = (1.1089319829...)°.

What happens if we omit the logarithms on the left-hand side? Since a; has
infinite expectation, it is not surprising that asymptotic normality fails. Lévy [6],
Philipp [7], Heinrich [8] and Hensley [9] proved that

lim P (M S — (In(n) — 7 — In(In(2))) < t) _ / Fu) du

n—00 n
k=1

where the density f of the limiting stable distribution S(1,1,7/2,0;1) is given by

flu) = l/sin(7r v) exp(—vn(v) — uv) dv.

™
0

See Figure 1. The median of f is 1.35578... and the mode of f is —0.22278.... Extreme
asymmetry is the most noticeable feature here!

As a footnote, let us return to some very simple ideas. If X, X5, ..., X,, is an in-
dependent sample from the uniform distribution and Y7, Y3, ..., Y, is an independent
sample from the Gauss-Kuzmin distribution, then

1 o 1 1 & 1
— X — = — Y, — | —— -1

n kz_; b9 1 f U2 n kz_; g (ln(2) )
P|———— <t —>—/exp<——>du<—P — <t
1 /3 Var 2 1 \/(3/2)ln(2) —1
6V n In(2) n

as n — oo. Also, the distributions of reciprocals have densities

1
P(i<t)= 5 if ¢t > 1,
X~ 0 otherwise;
1 1

1 _ ift>1
P(7§t>: m@2)tt+1) =
0 otherwise.

The expectations of 1/X and of 1/Y are infinite. Our ideas hence become vastly
more complicated at this point [9]:

P(%ZXLk—(ln(n)—i—l—y)gt) — /f(u)du
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where f is exactly as before, and

b (%Zyik_ ln<n)+inz2l)n(2)_7 §t> _ /g<u)du

—00

where

g(u) = jro/oosm <1§(2)) exp (‘1;(}2) In(v) — uv) dv

is the density of the limiting stable distribution S(1,1,7/(21n(2)),0;1). The median
of g is 2.48474... and the mode of g is 0.20735...; asymmetry again dominates. A
wealth of materials on calculating stable distributions is available [10, 11, 12].

0.5.
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