Continued Fraction Transformation. II

Steven Finch

June 15, 2007
As in our earlier essay [1], define $T:[0,1] \rightarrow[0,1]$ by

$$
T(x)= \begin{cases}\left\{\frac{1}{x}\right\} & \text { if } 0<x \leq 1 \\ 0 & \text { if } x=0\end{cases}
$$

where $\{\xi\}=\xi-\lfloor\xi\rfloor$ denotes the fractional part of ξ. Previously, we examined the moments of $T^{j} X$ and of $\ln \left(T^{j} X\right)$, where X is a random variable in $[0,1]$. The distribution of X was assumed to be either uniform or Gauss-Kuzmin.

What can be said about the moments of $\left\lfloor 1 / T^{j} X\right\rfloor$ and of $\ln \left\lfloor 1 / T^{j} X\right\rfloor$? An answer to this question helps in determining the asymptotic distribution of the first n continued fraction "digits", corresponding to uniformly distributed X as $n \rightarrow \infty$.
0.1. Uniform Distribution. Let γ denote the Euler-Mascheroni constant, ψ denote the digamma function, and ζ denote the Riemann zeta function. If X is a random variable following the uniform distribution on $[0,1]$, then

$$
\begin{aligned}
\mathrm{E}\left\lfloor\frac{1}{X}\right\rfloor & =\int_{1}^{\infty} \frac{\lfloor y\rfloor}{y^{2}} d y \sim \sum_{n \leq N} \int_{n}^{n+1} \frac{n}{y^{2}} d y \sim \sum_{n \leq N} n\left(\frac{1}{n}-\frac{1}{n+1}\right) \sim \sum_{n \leq N} \frac{1}{n+1} \sim \ln (N), \\
\mathrm{E}\left\lfloor\frac{1}{T X}\right\rfloor & =\int_{1}^{\infty}\left\lfloor\frac{1}{\{y\}}\right\rfloor \frac{d y}{y^{2}} \sim \sum_{n \leq N} \int_{n}^{n+1}\left\lfloor\frac{1}{y-n}\right\rfloor \frac{d y}{y^{2}} \\
& \sim \sum_{n \leq N} \int_{0}^{1}\left\lfloor\frac{1}{z}\right\rfloor \frac{d y}{(z+n)^{2}} \sim \sum_{n \leq N} \int_{1}^{\infty} \frac{\lfloor w\rfloor}{(1+n w)^{2}} d w \\
& \sim \sum_{n \leq N} \sum_{m \leq N} \int_{m}^{m+1} \frac{m}{(1+n w)^{2}} d w \sim \sum_{n \leq N} \sum_{m \leq N} \frac{m}{n}\left(\frac{1}{1+n m}-\frac{1}{1+n(m+1)}\right) \\
& \sim \sum_{n \leq N} \sum_{m \leq N} \frac{1}{n(1+n m)} \sim \sum_{m \leq N}\left(\psi\left(1+\frac{1}{m}\right)+\gamma\right) \sim \frac{\pi^{2}}{6} \ln (N)
\end{aligned}
$$

[^0]as $N \rightarrow \infty$, via the substitutions $y=1 / x, z=y-n$ and $w=1 / z$. Hence both expected values are infinite. By contrast,
\[

$$
\begin{aligned}
\mathrm{E}\left(\ln \left\lfloor\frac{1}{X}\right\rfloor\right) & =\int_{1}^{\infty} \frac{\ln \lfloor y\rfloor}{y^{2}} d y=\sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{\ln (n)}{y^{2}} d y=\sum_{n=1}^{\infty} \frac{\ln (n)}{n(n+1)} \\
& =-\sum_{k=2}^{\infty}(-1)^{k} \zeta^{\prime}(k)=0.7885305659 \ldots
\end{aligned}
$$
\]

(Lüroth analog of Khintchine's constant [2]),

$$
\begin{aligned}
\mathrm{E}\left(\ln \left\lfloor\frac{1}{X}\right\rfloor^{2}\right)=\sum_{n=1}^{\infty} \frac{\ln (n)^{2}}{n(n+1)}=\sum_{k=2}^{\infty}(-1)^{k} \zeta^{\prime \prime}(k), \\
\begin{aligned}
& \operatorname{Var}\left(\ln \left\lfloor\frac{1}{X}\right\rfloor\right)=1.1759638742 \ldots=(1.0844186803 \ldots)^{2}, \\
& \mathrm{E}\left(\ln \left\lfloor\frac{1}{T X}\right\rfloor\right)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\ln (m)}{n}\left(\frac{1}{1+n m}-\frac{1}{1+n(m+1)}\right) \\
&=\sum_{n=1}^{\infty} \sum_{m=2}^{\infty} \frac{\ln (m)-\ln (m-1)}{n(1+n m)} \\
&=\sum_{m=2}^{\infty}(\ln (m)-\ln (m-1))\left(\psi\left(1+\frac{1}{m}\right)+\gamma\right) \\
&=\sum_{k=2}^{\infty}(-1)^{k} \zeta(k) \sum_{j=1}^{\infty}(1-k) \zeta^{\prime}(j+k-1) \\
&=1.06479 \ldots, \\
& \mathrm{E}\left(\ln \left\lfloor\left.\frac{1}{T X}\right|^{2}\right)\right.=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\ln (m)^{2}}{n}\left(\frac{1}{1+n m}-\frac{1}{1+n(m+1)}\right) \\
&=\sum_{m=2}^{\infty}\left(\ln (m)^{2}-\ln (m-1)^{2}\right)\left(\psi\left(1+\frac{1}{m}\right)+\gamma\right) \\
&=-\sum_{k=2}^{\infty}(-1)^{k} \zeta(k) \sum_{j=1}^{\infty}(1-k) \zeta^{\prime \prime}(j+k-1), \\
&\left.\operatorname{Var}\left(\ln \left\lvert\, \frac{1}{T X}\right.\right\rfloor\right)=1.49522 \ldots=(1.22279 \ldots)^{2} .
\end{aligned} \\
\hline 1)
\end{aligned}
$$

We shall not attempt to compute the cross-moments

$$
\mathrm{E}\left(\ln \left\lfloor\frac{1}{X}\right\rfloor \cdot \ln \left\lfloor\frac{1}{T X}\right\rfloor\right) \quad \text { or } \quad \rho\left(\ln \left\lfloor\frac{1}{X}\right\rfloor, \ln \left\lfloor\frac{1}{T X}\right\rfloor\right)
$$

and leave these as open problems.
0.2. Gauss-Kuzmin Distribution. If X is a random variable following the Gauss-Kuzmin distribution on $[0,1]$, then

$$
\begin{aligned}
\mathrm{E}\left\lfloor\frac{1}{X}\right\rfloor & =\frac{1}{\ln (2)} \int_{1}^{\infty} \frac{\lfloor y\rfloor}{y(y+1)} d y \sim \frac{1}{\ln (2)} \sum_{n \leq N} \int_{n}^{n+1} \frac{n}{y(y+1)} d y \\
& \sim \frac{1}{\ln (2)} \sum_{n \leq N} n \ln \left(1+\frac{1}{n(n+2)}\right) \sim \frac{1}{\ln (2)} \ln (N) \sim \mathrm{E}\left\lfloor\frac{1}{T X}\right\rfloor
\end{aligned}
$$

as $N \rightarrow \infty$. Hence both expected values are infinite. By contrast,

$$
\begin{aligned}
\mathrm{E}\left(\ln \left\lfloor\frac{1}{X}\right\rfloor\right)= & \frac{1}{\ln (2)} \sum_{n=1}^{\infty} \ln (n) \ln \left(1+\frac{1}{n(n+2)}\right) \\
= & \frac{1}{\ln (2)} \sum_{j=2}^{\infty}(-1)^{j} \frac{2 \zeta^{\prime}(j)-2^{j}\left(\zeta^{\prime}(j)+\frac{\ln (2)}{2^{j}}+\frac{\ln (3)}{3^{j}}\right)}{j} \\
& +(1-\ln (2))+\frac{\ln (3)}{\ln (2)}\left(\frac{2}{3}-\ln \left(\frac{5}{3}\right)\right) \\
= & 0.9878490568 \ldots=\ln (K)=\mathrm{E}\left(\ln \left\lfloor\frac{1}{T X}\right\rfloor\right)
\end{aligned}
$$

(Khintchine's constant [2]),

$$
\begin{aligned}
\mathrm{E}\left(\ln \left\lfloor\frac{1}{X}\right\rfloor^{2}\right)= & \frac{1}{\ln (2)} \sum_{n=1}^{\infty} \ln (n)^{2} \ln \left(1+\frac{1}{n(n+2)}\right) \\
= & -\frac{1}{\ln (2)} \sum_{j=2}^{\infty}(-1)^{j} \frac{2 \zeta^{\prime \prime}(j)-2^{j}\left(\zeta^{\prime \prime}(j)-\frac{\ln (2)^{2}}{2^{j}}-\frac{\ln (3)^{2}}{3^{j}}\right)}{j} \\
& +\ln (2)(1-\ln (2))+\frac{\ln (3)^{2}}{\ln (2)}\left(\frac{2}{3}-\ln \left(\frac{5}{3}\right)\right) \\
= & \mathrm{E}\left(\ln \left\lfloor\frac{1}{T X}\right\rfloor^{2}\right)
\end{aligned}
$$

$\operatorname{Var}\left(\ln \left\lfloor\frac{1}{X}\right\rfloor\right)=1.4094310970 \ldots=(1.1871946331 \ldots)^{2}=\operatorname{Var}\left(\ln \left\lfloor\frac{1}{T X}\right\rfloor\right)$.

The joint expectation

$$
\mathrm{E}\left(\ln \left\lfloor\frac{1}{X}\right\rfloor \cdot \ln \left\lfloor\frac{1}{T X}\right\rfloor\right)
$$

simplifies to

$$
\frac{1}{\ln (2)} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \ln (n) \ln (m) \ln \left(1+\frac{1}{(1+(n+1) m)(1+n(m+1))}\right)
$$

and can be numerically evaluated via suitable generalization of Kummer's method [3]. It follows that

$$
\rho\left(\ln \left\lfloor\frac{1}{X}\right\rfloor, \ln \left\lfloor\frac{1}{T X}\right\rfloor\right)=-0.0876526887 \ldots=r_{1} .
$$

0.3. Variance of Sample Mean. The sample mean

$$
\hat{\mu}_{n}(X)=\frac{1}{n} \sum_{0 \leq j<n} \ln \left\lfloor\frac{1}{T^{j} X}\right\rfloor
$$

satisfies

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \mathrm{E}\left(\hat{\mu}_{n}(X)\right)=\ln (K)=0.9878490568 \ldots=\mu \\
\lim _{n \rightarrow \infty} n \operatorname{Var}\left(\hat{\mu}_{n}(X)\right)= \\
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\substack{0 \leq j<n, 0 \leq k<n}} \operatorname{Cov}\left(\ln \left(T^{j} X\right), \ln \left(T^{k} X\right)\right)=\sigma^{2} \\
\\
\approx \operatorname{Var}\left(\ln \left\lfloor\frac{1}{X}\right\rfloor\right)\left(1+\frac{2 r_{1}}{1-r_{1}}\right) \approx 1.2
\end{gathered}
$$

for a wide variety of initial distributions for X on $[0,1]$. (No negative sign is introduced this time in the definition of $\hat{\mu}_{n}(X)$, unlike before.)
0.4. Continued Fraction Digits. If $a_{1}, a_{2}, a_{3}, \ldots$ denote the partial denominators (digits) of X, then it is clear that

$$
\ln \left(\left(a_{1} a_{2} a_{3} \cdots a_{n}\right)^{\frac{1}{n}}\right)=\frac{1}{n} \sum_{0 \leq j<n} \ln \left\lfloor\frac{1}{T^{j} X}\right\rfloor
$$

(no nonzero error ε_{n} is present here). Baladi \& Vallée [4] proved that the following Central Limit Theorem is true:

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left(\frac{\frac{1}{n}\left(\ln a_{1}+\ln a_{2}+\cdots+\ln a_{n}\right)-\mu}{\frac{\sigma}{\sqrt{n}}} \leq t\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} \exp \left(-\frac{u^{2}}{2}\right) d u
$$

and Lhote [5] computed that

$$
\sigma^{2}=1.2297301427 \ldots=(1.1089319829 \ldots)^{2}
$$

What happens if we omit the logarithms on the left-hand side? Since a_{k} has infinite expectation, it is not surprising that asymptotic normality fails. Lévy [6], Philipp [7], Heinrich [8] and Hensley [9] proved that

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left(\frac{\ln (2)}{n} \sum_{k=1}^{n} a_{k}-(\ln (n)-\gamma-\ln (\ln (2))) \leq t\right)=\int_{-\infty}^{t} f(u) d u
$$

where the density f of the limiting stable distribution $S(1,1, \pi / 2,0 ; 1)$ is given by

$$
f(u)=\frac{1}{\pi} \int_{0}^{\infty} \sin (\pi v) \exp (-v \ln (v)-u v) d v
$$

See Figure 1. The median of f is $1.35578 \ldots$ and the mode of f is $-0.22278 \ldots$. Extreme asymmetry is the most noticeable feature here!

As a footnote, let us return to some very simple ideas. If $X_{1}, X_{2}, \ldots, X_{n}$ is an independent sample from the uniform distribution and $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an independent sample from the Gauss-Kuzmin distribution, then

$$
\mathrm{P}\left(\frac{\frac{1}{n} \sum_{k=1}^{n} X_{k}-\frac{1}{2}}{\frac{1}{6} \sqrt{\frac{3}{n}}} \leq t\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} \exp \left(-\frac{u^{2}}{2}\right) d u \leftarrow \mathrm{P}\left(\frac{\frac{1}{n} \sum_{k=1}^{n} Y_{k}-\left(\frac{1}{\ln (2)}-1\right)}{\frac{1}{\ln (2)} \sqrt{\frac{(3 / 2) \ln (2)-1}{n}}} \leq t\right)
$$

as $n \rightarrow \infty$. Also, the distributions of reciprocals have densities

$$
\begin{gathered}
\mathrm{P}\left(\frac{1}{X} \leq t\right)= \begin{cases}\frac{1}{t^{2}} & \text { if } t \geq 1 \\
0 & \text { otherwise }\end{cases} \\
\mathrm{P}\left(\frac{1}{Y} \leq t\right)= \begin{cases}\frac{1}{\ln (2)} \frac{1}{t(t+1)} & \text { if } t \geq 1 \\
0 & \text { otherwise. }\end{cases}
\end{gathered}
$$

The expectations of $1 / X$ and of $1 / Y$ are infinite. Our ideas hence become vastly more complicated at this point [9]:

$$
\mathrm{P}\left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{X_{k}}-(\ln (n)+1-\gamma) \leq t\right) \rightarrow \int_{-\infty}^{t} f(u) d u
$$

where f is exactly as before, and

$$
\mathrm{P}\left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{Y_{k}}-\frac{\ln (n)+1-\ln (2)-\gamma}{\ln (2)} \leq t\right) \rightarrow \int_{-\infty}^{t} g(u) d u
$$

where

$$
g(u)=\frac{1}{\pi} \int_{0}^{\infty} \sin \left(\frac{\pi v}{\ln (2)}\right) \exp \left(-\frac{v}{\ln (2)} \ln (v)-u v\right) d v
$$

is the density of the limiting stable distribution $S(1,1, \pi /(2 \ln (2)), 0 ; 1)$. The median of g is $2.48474 \ldots$ and the mode of g is $0.20735 \ldots$; asymmetry again dominates. A wealth of materials on calculating stable distributions is available [10, 11, 12].
0.5. Acknowledgements. I thank for Pascal Sebah for computing r_{1}, Loïck Lhote for computing σ^{2}, John Nolan for his STABLE software [12], and Doug Hensley for helpful discussions.

References

[1] S. R. Finch, Continued fraction transformation, unpublished note (2007).
[2] S. R. Finch, Khintchine-Lévy constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 59-65.
[3] P. Sebah, Accelerating convergence of a double series, unpublished note (2007).
[4] V. Baladi and B. Vallée, Euclidean algorithms are Gaussian, J. Number Theory 110 (2005) 331-386; MR2122613 (2006e:11192).
[5] L. Lhote, The variance associated with Khintchine's constant, unpublished note (2007).
[6] P. Lévy, Fractions continues aléatoires, Rend. Circ. Mat. Palermo 1 (1952) 170208; also in Euvres de Paul Lévy, v. VI, Théorie des jeux, ed. D. Dugué, P. Deheuvels and M. Ibéro, Gauthier-Villars, 1980, pp. 361-399; MR0066583 (16,600e) and MR0586767 (83c:01070).
[7] W. Philipp, Limit theorems for sums of partial quotients of continued fractions, Monatsh. Math. 105 (1988) 195-206; MR0939942 (89e:60069).
[8] L. Heinrich, Rates of convergence in stable limit theorems for sums of exponentially ψ-mixing random variables with an application to metric theory of continued fractions, Math. Nachr. 131 (1987) 149-165; MR0908807 (89a:60061).
[9] D. Hensley, The statistics of the continued fraction digit sum, Pacific J. Math. 192 (2000) 103-120; MR1741027 (2000k:11092); Zbl. 1015.11038.
[10] J. P. Nolan, Numerical calculation of stable densities and distribution functions. Heavy tails and highly volatile phenomena, Comm. Statist. Stochastic Models 13 (1997) 759-774; MR1482292 (98f:60024).
[11] I. A. Belov, On the computation of the probability density function of α-stable distributions, Proc. $10^{\text {th }}$ Internat. Conf. Mathematical Modelling and Analysis $-2^{\text {nd }}$ Internat. Conf. Computational Methods in Applied Mathematics, Trakai, 2005, ed. R. Čiegis, pp. 333-341; MR2194689; http://www.techmat.vgtu.lt/~art/proc/file/BeloIg.pdf.
[12] J. P. Nolan, Stable Distributions. Models for Heavy Tailed Data, Birkhäuser, to appear; http://auapps.american.edu/jpnolan/www/stable/stable.html.

[^0]: ${ }^{0}$ Copyright © 2007 by Steven R. Finch. All rights reserved.

