
Continued Fraction Transformation. II

Steven Finch

June 15, 2007

As in our earlier essay [1], define  : [0 1]→ [0 1] by
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where {} =  − bc denotes the fractional part of . Previously, we examined

the moments of   and of ln( ), where  is a random variable in [0 1]. The

distribution of  was assumed to be either uniform or Gauss-Kuzmin.

What can be said about the moments of b1 c and of ln b1 c? An an-
swer to this question helps in determining the asymptotic distribution of the first 

continued fraction “digits”, corresponding to uniformly distributed  as →∞.
0.1. Uniform Distribution. Let  denote the Euler-Mascheroni constant,  de-

note the digamma function, and  denote the Riemann zeta function. If  is a

random variable following the uniform distribution on [0 1], then
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as  → ∞, via the substitutions  = 1,  =  −  and  = 1. Hence both

expected values are infinite. By contrast,
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(Lüroth analog of Khintchine’s constant [2]),
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We shall not attempt to compute the cross-moments
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and leave these as open problems.

0.2. Gauss-Kuzmin Distribution. If  is a random variable following the

Gauss-Kuzmin distribution on [0 1], then
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(Khintchine’s constant [2]),
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The joint expectation
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[3]. It follows that
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0.3. Variance of Sample Mean. The sample mean
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for a wide variety of initial distributions for on [0 1]. (No negative sign is introduced

this time in the definition of ̂(), unlike before.)

0.4. Continued Fraction Digits. If 1, 2, 3,    denote the partial denomina-

tors (digits) of , then it is clear that
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(no nonzero error  is present here). Baladi & Vallée [4] proved that the following

Central Limit Theorem is true:
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and Lhote [5] computed that

2 = 12297301427 = (11089319829)2

What happens if we omit the logarithms on the left-hand side? Since  has

infinite expectation, it is not surprising that asymptotic normality fails. Lévy [6],

Philipp [7], Heinrich [8] and Hensley [9] proved that
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where the density  of the limiting stable distribution (1 1 2 0; 1) is given by

() =
1



∞Z
0

sin( ) exp(− ln()−  ) .

See Figure 1. The median of  is 135578 and the mode of  is −022278 Extreme
asymmetry is the most noticeable feature here!

As a footnote, let us return to some very simple ideas. If 1, 2,   ,  is an in-

dependent sample from the uniform distribution and 1, 2,   ,  is an independent

sample from the Gauss-Kuzmin distribution, then
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The expectations of 1 and of 1 are infinite. Our ideas hence become vastly

more complicated at this point [9]:
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where  is exactly as before, and
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is the density of the limiting stable distribution (1 1 (2 ln(2)) 0; 1). The median

of  is 248474 and the mode of  is 020735; asymmetry again dominates. A

wealth of materials on calculating stable distributions is available [10, 11, 12].
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