Continued Fraction Transformation. II1
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We continue the discussion from our earlier essays [1, 2], turning attention first to
two variations on regular continued fractions (RCFs). For reasons of space, only first-
order results (means) will be presented. After this, we exhibit formulas connected
with Liiroth representations and with ordinary decimal representations.

0.1. Nearest Integer Continued Fractions. Define T : [-1/2,1/2] — [-1/2,1/2]
by
L 1] if —1/2<x<1/2and 0
T =4 7~ 5—1-5 if —1/2<z<1/2andzx #0,
0 if z = 0.

For example,

T —3 =0.141592..., = +3] =7
T(r —3) = 0.062513..., |7 + 3| =16,
T2(r —3) = —0.003405..., |y + 3| = —294
T3(x — 3) = 0.365409..., |7t + 4| =3,
TH(r —38) = ~0.263340.., | geigy + 3| =~
and
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is the nearest integer continued fraction (NICF) expansion for 7. This is also
called a centered continued fraction. Let X be a random variable in [-1/2,1/2]
with density

1 1
if —1/2<2<0
d ' = >
d_P<X§$): lnggo)gp—ll—l—kx
r if0<z<1/2
In(p) o+
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where ¢ = (1 + 1/5)/2 denotes the Golden mean [3]. What is the mean of In(]X|)?
This is equal to the asymptotic mean of (1/n)lng,, corresponding to denominators
¢» in the partial convergents to x :

p 3 pr 22 ps 355 pi 104348 ps 312689

a1 ¢ 7T g 1137 q 332157 ¢ 995327
as n — oo. It follows that [4, 5]

1/2

1 ; In(—x
E(In(|X])) = ln(gp)/¢+1+x lns@/

~1/2
2
= — = —1.7091 .. = E(In(|TX])).
e 7091579853... = E(In(|TX|))
Also, what is the mean of In(|a;|), where a1, as, as, . .. denote the partial denominators

(digits) of X 7 Using the substitution y = +1/x, it follows that [6, 7]

0 1/2

1 1 1 In|—1+1] 1 In |l

1 —_ — — z 2 d x 2 d

E(“leJD 1n(90)/ otlta “m«o)/ otz =
-1/2 0

1 [ mly+i] mly+i
N ln(w)/ (y((wl)y—l) +y(<py+1)>dy

5/2
1 In(2) In(2)
B ln(w)z/ (y((so Thy—1) ylpy+t 1)) !

= " In(n)
= ( 90+1 -1) y(¢y+1))dy
_ (@) (5p+3
B 111(90)1 (590+2>
- p+Dn+3)—lon—3) +1
) (¢+1)(n—%)—1w(n+%)+1>

= 1.6964441175... = E <ln

)

These two constants are the NICF analogs of Lévy’s constant and Khintchine’s con-
stant, respectively. A Central Limit Theorem exists in both cases [8], but the associ-
ated variances have not yet been numerically evaluated.
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0.2. 0Odd Digit Continued Fractions. Define T": [0,1] — [0, 1] by

1 |1 1
——L—J if |—| =1mod2 and = # 0,
xz X X
_ 17 1 1
T(x) [——‘ —— if |=| =1mod2 and z # 0,
s xXr xr
0 if x =0.
For example,
T —3=0.141592..., |55 =7,
T(r — 3) = 0.062513..., T(ﬂ{g)J = 15,
T2(r — 3) = 0.996594..., TQ(;_?))J —1,
T3(r —3) = 0.003417..., | ;| =298,
T(r —3) = 0.365409.., | 7riz;| =3,
T3 (7 — 3) = 0.263340..., T5(}r_3) =3,
T(x — 3) = 0.797366..., g | = 1

and

3_’_L’+L|_|_L’ i 1’ 1’ L| l|_|_l|_|_i|_|_...
7 15 1 293 3 13 |1 I3 |1 |15

SRS (S (S TR S TR S S (S (P
7 J15 1 293 |-3 |3 |1 |3 |1 |15

is the odd digit continued fraction (ODCF) expansion for 7. The phrase “partial
denominator” or “partial quotient” often replaces the word “digit”. Let X be a
random variable in [0, 1] with density

o <y L Lo,
dx _$_3ln(g0) o—1+x ¢+1—=x

where ¢ is as before. What is the mean of In(X)? This is equal to the asymptotic
mean of (1/n)1Ing,, corresponding to denominators ¢, in the partial convergents to
T

p_3 p ] P4 Ps

22 ps 333 ps_ 355 p; 104343
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as n — oo. It follows that [9, 10]

b)) — L j(gpln(m) LI )dm

3In(p) —-14+z p+1-x
2
= gy = L 1304386568... = E(n(T X))
Also, what is the mean of In(|a;|), where aq, as, as, ... denote the digits of X 7 Let

|z] = |z] if |z] is odd and |z] = [z] otherwise. Using the substitution y = 1/z, it
follows that [11]

(v |5) = ww | (e ) o

1 1 1
B 31n(90)1/1n Lv] (y((w —1y+1) - y((p+ 1)y — 1)) W

2n—+2

1 < 1 1
= T & / e ) (S * )

B - 200+ 1(n+1)—1 2(p—1)n+1
31n(¢);1n(2”+1>1n< 20+ 1)n—1 20p-Dn+1)+1

1
— 1.0283554474.. = E (In | =—| | .
028355447 E<nLTX—D

These two constants are the ODCF analogs of Lévy’s constant and Khintchine’s
constant, respectively. A Central Limit Theorem exists in both cases [8], but again
the associated variances have not yet been numerically evaluated.

0.3. Liiroth Representations. Define A : [0,1] — [0, 1] by

o[ G e

0 Hfx=0

R CI

if z=0.



CONTINUED FRACTION TRANSFORMATION. III 5

For example,

w=ld) =7 h=l)=T,
az = {A(ﬂlfg)J =1, by = B(;fS)J = 14,
as = A2(71r—3) =1, by = Bz(i—3) =71,
a4 = A3(71r73) =1, by = 33(7173) =1,
a5 = A4(71r73) =2, bs = 34(7173) =1,
e = A5(71r—3) =1, bg = B5(71r—3) =1,
ar = A6(71r73) =4, b= Bﬁ(flrf?)) =15

and

oo n—1
1 1 (—1)1

are the positive Liiroth and alternating Liiroth representations for 7, respec-
tively. The limiting constants are the same whether we use as or bs. For uniformly
distributed X, it follows that

oo

1 o0
E (ln bD — nz pY 1 Z — 0.7885305659...

=2

(Liiroth analog of Khintchine’s constant [4, 12, 13]),
1 In(n+1) =
In{—=|)= (k) = 1.2577468869...
o(v[3]) X = e
(which appeared earlier [1]),

B <1n &J o %D _ nf: 1n7(1 n”:ll

1

= —2) ('(2k) = 2.0462774528...

k=1

(Liiroth analog of Lévy’s constant [14]),

. <1n 1] ) -3 = S 1),
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3] )2
n=1 =2
) 1.1759638742... = (1.0844186803...)2,

= 0.7543859444... = (0.8685539387...)7,

() - £

= DR+ 30 S )
k=2 j=1 7 k=2

X

It can be proved whenever ¢ # j that digits a; and a; are independent random
variables (unlike any of the continued fraction expansions we have examined), hence
p(Ina;,Ina;) = 0. As a consequence, two relevant Central Limit Theorems are easy
to state: as n — oo, both of the distributions

1 1
Var (m {—J +In {}D = 3.8012096188... = (1.9496691049...).

n n
(%Zln(ai) —0.7885305659... <%Zln(ai(ai+1)) —2.0462774528...
=1 i=1
P T.0544186803 . <t|, P 10496691049 .. <t
vn N

tend to the standard normal. (For earlier expansions, the computation of o was
complicated by the existence of nonzero correlations.)

Here is an unexplained coincidence. Consider a random ordered (strongly) binary
tree with NV vertices, where N is odd. Janson [15, 16] recently proved that

iﬂ . ad ln[n(n—i-l)]:
E(\/N W) 1+Z—n(n+1) 3.0462774528...

as N — oo (which implies that the cross-correlation between height H and width
W is asymptotically —0.6428251027...). The appearance of the same infinite series
in two seemingly distant settings is fascinating! Why should the joint distribution of
height and width of trees be at all related to the ergodic theory of numbers?

Since
1/k

P(aj:k):m: / dx:P(k<%<k+1>

1/(k+1)
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where X is uniformly distributed, it follows that [2, 17, 18]

< }[:a] n)+1-7y > /rf

and f is the density function

f(u)

34|~

/Sln mv)exp(—vin(v) —uwv)dv
0

of the limiting stable distribution S(1,1,7/2,0;1). Similarly precise characterizations
of digit sums for NICF and ODCF remain open.

0.4. Ordinary Decimal Representations. At the risk of being anticlimatic,
we define 7" : [0,1] — [0, 1] by

T(x)={10z} =10x — |10 x|

and digits a; = [10z], ay = [10Tz|, a3 = |10T?z], .... For uniformly distributed
X, it follows that
E([10X])=%, Var([10X])=2

2

and, because a; and a; are independent random variables whenever ¢ # 7,

1 n
EJ;%'—Q 1 / u?
P 1 /33 - —>\/27T/ Xp( 2>
2 —00

n

We merely mention the Newcomb-Benford law [19, 20, 21], which is a different topic
altogether (leading nonzero digit phenomenology) and yet seemingly related.
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