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Let b+ c = bc+  bc, where  is the imaginary unit. Extending the regular
continued fraction algorithm [1] from the real interval [0 1] to the complex square

[0 1] + [0 1] is problematic: the transformation

 () =

⎧⎨⎩
1


−
¹
1



º
if  6= 0

0 if  = 0

gives divergent continued fractions of the form

1|
|− +

1|
|− +

1|
|− + · · ·

whenever

 =

√


− 1 + 
1

2

for any odd prime number . This observation appears to be new. Nakada [2] noted

divergence given any  satisfying both ||  1 and | − |  1, for which  = 3 is a

limiting case.

Extending the nearest integer continued fraction algorithm [3] to the complex

square [−12 12] + [−12 12] at least makes sense! The transformation here is

 () =

⎧⎨⎩
1


−
¹
1


+
1

2

º
if  6= 0

0 if  = 0

and is called Hurwitz’s algorithm [4, 5]. Consider the eight regions into which the

four circular arcs | ± 1| = 1, | ± | = 1 partition the square. The additional four
circular arcs | ± 1 ± | = 1 subdivide four of the regions, making a total of twelve.
Hensley [6, 7, 8] proved that the invariant density function for  is smooth on the

interiors of the twelve regions and continuous everywhere except perhaps along the

eight circular arcs. No closed-form expression for the density is known. For a complex

random variable  following this distribution, Monte Carlo simulation suggests that

E(ln(||)) = 1092766
We shall not pursue this topic further, opting instead to discuss the most natural

extension from R to C yet found of continued fraction theory.
0Copyright c° 2007 by Steven R. Finch. All rights reserved.
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0.1. Schmidt’s Complex Continued Fractions. Define matrices

 =

µ
1 1

0 1

¶
  =

µ
0 1

1 0

¶


Regular continued fractions can be thought of as infinite products of matrices; for

example,

 = 3 +
1|
|7 +

1|
|15 +

1|
|1 +

1|
|292 +

1|
|1 +

1|
|1 +

1|
|1 +

1|
|2 +

1|
|1 +

1|
|3 + · · ·

is identified with

37151292111213 · · · 

If the above product is multiplied on the right byµ
1 0 1

0 1 1

¶


yielding µ
(1) (2) (1) + (2)

(1) (2) (1) + (2)

¶


then the ratios (1)(1), (2)(2) and
¡
(1) + (2)

¢

¡
(1) + (2)

¢
each approach  as

more terms are included in the product. For later convenience, let (3) = (1) + (2)

and (3) = (1) + (2).

Define instead matrices [9, 10, 11, 12]

1 =

µ
1 

0 1

¶
 2 =

µ
1 0

− 1

¶
 3 =

µ
1−  

− 1 + 

¶


 =

µ
1 −1 + 

1−  

¶


1 =

µ
1 0

1−  

¶
 2 =

µ
1 −1 + 

0 

¶
 3 =

µ
 0

0 1

¶


With this enhanced “alphabet”, the real number  can be represented by

2
2
1 

7
3 

15
1  1

3 
292
1  1

3 
1
1 

1
3 

2
1 

1
3 

3
1 · · ·

and the interpretation of convergence (ratios of first-row elements to second-row ele-

ments) is identical to before.
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For the complex number , the matrix representation can be proved to be [9, 11]

 1
3 

3
3 

5
3 

7
3 

9
3 

11
3  13

3  15
3  17

3  19
3 · · ·

and for the number 4, it can be calculated to be

 1
2 2

1
3 

2
1 3

1
2 3121

6
3 

1
2 

4
3 22

2
1 

1
2 

1
3 

1
1 3

1
2
2 

1
3 

1
1 

4
3 2

2
3 1

3
2 

1
3 2

1
3 

1
2 1

2
2 

1
1 2

1
1 

6
2 3

12
2 

 1
3 

1
1 

1
2 

1
1 3

80
1 3

32
1  1

2 
1
1 32

1
1 1

3
2 

1
1 

2
2 3

3
2 

1
1 

1
1 

1
2

3
1
2 

2
1 

2
2 

8
3 1

19
3  5

2 
1
3 2

1
1 

6
3 1

6
3 

1
1 2

1
2 

2
3 2

3
3 

5
2 1

4
2

 1
2 1

2
2 

2
1 3

4
1 

1
2 

3
1 3

1
3 1

2
3 2

1
2 

1
1 

1
2 

1
3 

1
1 

2
2 3

2
2 

1
3

23
2
1 

2
2 31

1
3 

1
1 

1
3 

8
2 3

1
3 1

2
3 

3
2 

3
1 3

3
1 

1
3 1

1
3 

 1
1 23

1
3 1

2
3 

3
2 

1
3 

1
2 

1
1 

1
3 

5
1 

1
3 

2
1 21

2
2 2

1
1 

2
3 

1
1 3

1
1

 1
2 

1
1 

1
3 1

3
3 3

1
2 13

3
3 

2
1 

1
3 

1
2 

1
1 3

1
2 1

1
1 

1
2 

1
3 21

 1
3 3

2
1 231

1
1 

1
2 31

1
2 

4
2 3

3
1 

2
3 2

4
1 1

2
1 

2
3

 1
1 

1
3 2

5
3 

1
1 

1
2 

1
3 

2
2 2

1
3 1

1
3 

1
3 

1
2 

1
1 

1
2 

8
1 2

4
1 

2
2 32

1
1

2
2
1 

1
3 3

1
2 

1
1 

1
3 

2
1 

4
3 2

3
3 

3
1 2

3
1 

1
1 2

1
3 

1
2 

1
1 

1
1 3

1
1 

1
2

 2
1 

1
2 

1
1 3

3
1 

1
1 2

1
3 2

2
1 

6
1 2

4
1 

2
1 3

2
1 1

1
3 

1
2 

1
3 

1
2 · · · 

Note that powers of  are collected together, but not powers of  or . The terms

of the matrix representation are hence

1 =  2 =  3 =  1
3  4 =  5 =  6 =  3

3    

for  and

1 =  1
2  2 = 2 3 =  1

3  4 =  5 =  2
1  6 = 3   

for 4. This convention will be crucial later: the phrase “full terms” will sometimes

be used for emphasis. We now give Schmidt’s algorithm for generating such chains

of matrices.

Let C and C∗ denote two distinct complex planes. Define sets

 () = { ∈ C : Im() ≥ 0} 

 ∗() =

½
 ∈ C∗ : 0 ≤ Re() ≤ 1 Im() ≥ 0

¯̄̄̄
 − 1

2

¯̄̄̄
≥ 1
2

¾
and subsets

 (1) = { ∈  () : Im() ≥ 1} 
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 (2) =

½
 ∈  () :

¯̄̄̄
 − 

2

¯̄̄̄
≤ 1
2

¾


 (3) =

½
 ∈  () :

¯̄̄̄
 −

µ
1 +



2

¶¯̄̄̄
≤ 1
2

¾


 () =

⎧⎪⎨⎪⎩
 ∈  () : 0  Re()  1

1

2
 Im()  1¯̄̄̄

 − 

2

¯̄̄̄

1

2


¯̄̄̄
 −

µ
1 +



2

¶¯̄̄̄

1

2

⎫⎪⎬⎪⎭ 

 (1) =

⎧⎪⎨⎪⎩
 ∈  () : 0 ≤ Re()  1 0 ≤ Im()  1

2
¯̄̄̄

 − 

2

¯̄̄̄

1

2


¯̄̄̄
 −

µ
1 +



2

¶¯̄̄̄

1

2

⎫⎪⎬⎪⎭ 

 (2) =

½
 ∈  () : Re()  1 0 ≤ Im()  1

¯̄̄̄
 −

µ
1 +



2

¶¯̄̄̄

1

2

¾


 (3) =

½
 ∈  () : Re()  0 0 ≤ Im()  1

¯̄̄̄
 − 

2

¯̄̄̄

1

2

¾


 ∗(1) =

½
 ∈  ∗() : 0 ≤ Re() ≤ 1 Im()  1

¯̄̄̄
 −

µ
1

2
+ 

¶¯̄̄̄

1

2

¾


 ∗(2) =

⎧⎪⎨⎪⎩
 ∈  ∗() : 0 ≤ Re()  1

2
 0 ≤ Im() ≤ 1¯̄̄̄

 − 1
2

¯̄̄̄
≥ 1
2


¯̄̄̄
 −

µ
1

2
+ 

¶¯̄̄̄

1

2

⎫⎪⎬⎪⎭ 

 ∗(3) =

⎧⎪⎨⎪⎩
 ∈  ∗() :

1

2
 Re() ≤ 1 0 ≤ Im() ≤ 1¯̄̄̄

 − 1
2

¯̄̄̄
≥ 1
2


¯̄̄̄
 −

µ
1

2
+ 

¶¯̄̄̄

1

2

⎫⎪⎬⎪⎭ 

 ∗() =

½
 ∈  ∗() :

¯̄̄̄
 −

µ
1

2
+ 

¶¯̄̄̄
≤ 1
2

¾


The letter  suggests “Farey set” and  (), for instance, is the image of the interior

of  ∗() under the action of , where  is the value of the linear fractional function

 =

µ
1 −1 + 

1−  

¶
 =

 + (−1 + )

(1− ) + 
  ∈  ∗()

Note that each of the seven matrices is invertible and, for instance,

−1 =

µ −1 1 + 

−1−  

¶
 =

− + (1 + )

(−1− ) + 
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Schmidt’s transformation  maps the disjoint union  ()∪ ∗() into  ()∪ ∗()
via the following formula:

 ( ) =

⎧⎨⎩
¡
 −1  

¢
if ( ∈  () ∧  = 1) ∨ ( ∈  ∗() ∧  = 0) ¡

−1  1− 
¢

if  ∈  () ∧  = 1
(−1 1− ) if ( ∈  () ∧  = 1) ∨ ( ∈  ∗() ∧  = 0)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( −  ) if ( ∈  (1) ∧  = 1) ∨ ( ∈  ∗(1) ∧  = 0) µ


 + 1
 

¶
if ( ∈  (2) ∧  = 1) ∨ ( ∈  ∗(2) ∧  = 0) µ

(1 + ) − 

 + (1− )
 

¶
if ( ∈  (3) ∧  = 1) ∨ ( ∈  ∗(3) ∧  = 0) µ



(1 + ) − 
 1− 

¶
if  ∈  (1) ∧  = 1µ

 − (1 + )

−  1− 

¶
if  ∈  (2) ∧  = 1

(− 1− ) if  ∈  (3) ∧  = 1µ − + (1 + )

(−1− ) + 
 1− 

¶
if ( ∈  () ∧  = 1) ∨ ( ∈  ∗() ∧  = 0)

where  = 1 2 3 and  = 0 1. The chains for ,  and 4 were obtained by

iterating  with starting value  = 1, meaning that ,  and 4 are thought of

as residing in  (). Clearly  ∈  ∗() and  ∈  ∗(), but 4 can thought of as
residing in  ∗() as well. Starting with  = 0 instead, the dual chain for 4 is

 2
1 2

1
3 

1
1 1

1
3 1

1
3 2

1
3 

5
2 1

1
1 2

4
1 

2
3 2

2
2 

1
2 3

 1
2 

2
3 1

1
2 

1
3 

1
1 2

3
1 

4
3 1

1
3 2

3
3 1

1
3 3

1
1 

12
2 1

7
2

 1
1 1

1
3 

1
2 

1
3 

32
3 1

80
3 1

1
2 3

1
3 

3
1 21

1
3 

2
1 3

1
1 1    

Dual chains will not be mentioned again, since the ergodic results for chains we seek

are the same as ergodic results for dual chains. The associated geometry of Schmidt’s

algorithm is well-illustrated in [6, 13].

0.2. Invariant Density. Let  : R2 → R be given by

( ) =
1

 
− 1

2
arctan

µ




¶
and ̃ :  () ∪  ∗()→  () ∪  ∗() be given by

̃() =

⎧⎪⎨⎪⎩
1

22
(( ) + (1−  ) + (2 − + 2 )) if  = +  ∈  ()

1

2

1

2
if  = +  ∈  ∗()
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The probability density function ̃ is continuous everywhere except at the points

0 1 ∈  () and 0 1 ∈  ∗().
Define a constant

 =
24√
15
arccos

µ
1

4

¶
− 2

and the Jacobian determinant

kk =
¯̄̄̄



()

¯̄̄̄2
for each  = 1 2 3. For example,

2 =


−  + 1 =


2 + ( + 1)2
+ 

2 + ( + 1)

2 + ( + 1)2


3 =
(1− ) + 

−  + (1 + )
=

(− 1) + ( + 1)2
(− 1)2 + ( + 1)2 + 

(− 1)2 + ( + 1)

(− 1)2 + ( + 1)2
and

k2k = 1

|−  + 1|4 =
1

(2 + ( + 1)2)
2


k3k = 1

|−  + (1 + )|4 =
1

((− 1)2 + ( + 1)2)2 

The invariant probability density function  is given by

() =

⎧⎨⎩



̃() if  ∈  (1) ∪  (2) ∪  (3) ∪  () ∪  ∗()





³
̃()− ̃() kk

´
if  ∈  () ∪  ∗(), 1 ≤  ≤ 3

where, as always, a union involving  and  ∗ is a disjoint one. Consequences of this
remarkable explicit formula follow in the next two sections. Note, for example,

() =




µ
1

2
− 1

(2 + ( + 1))
2

¶
for  ∈  ∗(2) and

() =




µ
1

2
− 1

((− 1)2 + ( + 1))
2

¶
for  ∈  ∗(3). Over and beyond the singularities at points 0 1 ∈  () and 0 1 ∈
 ∗(), there are jump discontinuities at the boundaries of  () and  ∗().
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0.3. Analog of Khintchine’s Constant. For each term  in the matrix rep-

resentation of , define the corresponding continued fraction “digit”

() =

½
 if  =  

 for some 1 ≤  ≤ 3
1 otherwise.

In the case  = 4, we have 1 = 2 = 3 = 4 = 1, 5 = 2, 6 = 1 and 16 = 6,

19 = 4. Define also

Φ() =  − 2√
1− 2

arccos().

It can be shown that

 ( 
1 ) = { ∈  () : Im() ≥ } 

 ( 
2 ) =

½
 ∈  () :

¯̄̄̄
 − 

2

¯̄̄̄
≤ 1

2

¾


 ( 
3 ) =

½
 ∈  () :

¯̄̄̄
 −

µ
1 +



2

¶¯̄̄̄
≤ 1

2

¾


 ∗( 
1 ) =

½
 ∈  ∗() : 0 ≤ Re() ≤ 1 Im()  

¯̄̄̄
 −

µ
1

2
+

¶¯̄̄̄

1

2

¾


 ∗( 
2 ) =

⎧⎪⎨⎪⎩
 ∈  ∗() : 0 ≤ Re()  1

2 + 1
 0 ≤ Im() ≤ 1


¯̄̄̄

 − 1
2

¯̄̄̄
≥ 1
2


¯̄̄̄
 −

µ
1

22
+





¶¯̄̄̄


1

22

⎫⎪⎬⎪⎭ 

 ∗( 
3 ) =

⎧⎪⎪⎨⎪⎪⎩
 ∈  ∗() :

2

2 + 1
 Re() ≤ 1 0 ≤ Im() ≤ 1


¯̄̄̄

 − 1
2

¯̄̄̄
≥ 1
2


¯̄̄̄
 −

µ
22 − 1
22

+




¶¯̄̄̄


1

22

⎫⎪⎪⎬⎪⎪⎭
and hence Z

 (
 )

()  =
1

2

µ
Φ

µ
1

2

¶
−Φ

µ
1

2(+ 1)

¶¶
=

Z
∗(

 )

() 
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for each 1 ≤  ≤ 3 and all  ≥ 1. By ergodicity, the sum (1)
P

≤ ln(())

tends almost certainly as  →∞ toZ
 ()∪∗()

ln(1())()  = 2

3X
=1

∞X
=1

Z
 (

 )− (+1
 )

ln()() 

=
3



∞X
=2

ln()

µ
Φ

µ
1

2

¶
− 2Φ

µ
1

2(+ 1)

¶
+ Φ

µ
1

2(+ 2)

¶¶

=
3



Ã
ln(2)Φ

µ
1

4

¶
+

∞X
=3

ln

µ
1− 1

(− 1)2
¶
Φ

µ
1

2

¶!
= ln(12617651749) = 02325116730

which is the Schmidt analog of Khintchine’s constant [10].

In the real case, the almost-certain divergence of (1)
P

≤ () is well-known.

It is interesting that in the complex case, the mean converges to

2

3X
=1

⎛⎜⎜⎝ ∞X
=1

Z
 (

 )− (+1
 )

() 

⎞⎟⎟⎠+ 3X
=1

Z
 ()

()  +

Z
 ()

()  +

Z
∗()

() 

=
3


Φ

µ
1

2

¶
+

⎛⎜⎝ 3X
=1

Z
 ()

()  +

Z
 ()

() 

⎞⎟⎠+ 



µ
2√
3
− 1
¶

=
3



µ
1− 4

3
√
3

¶
+





µ
2√
3
− 1
¶
+





µ
2√
3
− 1
¶
=




= 16667324083

The variance, however, is divergent.

0.4. Analog of Lévy’s Constant. We wish to compute the almost-certain limit

of (1) ln
¯̄̄

()


¯̄̄
as  → ∞, corresponding to denominators () in the partial con-

vergents to . The limit turns out to be independent of 1 ≤  ≤ 3. There are two
variations:

• the powerless scenario, in which () is evaluated at each iteration of Schmidt’s

algorithm (powers of  are irrelevant)

• the powerful scenario, in which () is evaluated only at iterations that “close”

a term  (only those powers of  constituting full terms are relevant, as well

as any terms  and ).
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The first gives a simpler result, but the second is more consistent with the real case.

As an example, look at

 1
2 2

1
3 1 =

µ
1 + 3 −6 + 

4 +  −3 + 7
¶
  1

2 2
1
3 

2
1 =

µ
1 + 3 −9 + 2
4 +  −4 + 11

¶
from the matrix representation of 4. In the powerless way of counting, the ratio


(2)
5 

(2)
5 is (−6+)(−3+7) and (2)6 

(2)
6 is (−9+2)(−4+11). In the powerful way

of counting, the ratio 
(2)
5 

(2)
5 is (−9+2)(−4+11). Both variations are interesting

to us.

For the powerless scenario, let

̃1() =

µ
̃1() ̃1()

̃1() ̃1()

¶
be the initial output of Schmidt’s algorithm, starting with input , and let

̃() = − ln |̃1() − ̃1()|

=

⎧⎪⎪⎨⎪⎪⎩
0 if  ∈  (1) ∪  (2) ∪  (3) ∪  ∗(1)
−1
2
ln
¡
2
¡
(− 1

2
)2 + ( − 1

2
)2
¢¢

if  ∈  (1) ∪  () ∪  ∗()
−1
2
ln (2 + ( − 1)2) if  ∈  (2) ∪  ∗(2)

−1
2
ln ((− 1)2 + ( − 1)2) if  ∈  (3) ∪  ∗(3)

Then (1) ln
¯̄̄

()


¯̄̄
converges to [10]

Z
 ()∪∗()

̃()̃()  = 029156

via numerical calculation of each component of the integral. Closed-form expressions

for the components appear to be impossible. Nakada [14, 15, 16], however, proved by

a different approach that the powerless Schmidt analog of Lévy’s constant is




= 02915609040 = ln(13385151519)

where  is Catalan’s constant [17, 18].

For the powerful scenario, let

1() =

µ
1() 1()

1() 1()

¶
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be the initial full term in the complex continued fraction expansion of , and let

() = − ln |1() − 1()|

=

⎧⎪⎪⎨⎪⎪⎩
0 if  ∈  (1) ∪  (2) ∪  (3) ∪  ∗(1)
−1
2
ln
¡
2
¡
(− 1

2
)2 + ( − 1

2
)2
¢¢

if  ∈  (1) ∪  () ∪  ∗()
−1
2
ln (22 + ( − 1)2) if  ∈ ¡ ( 

2 )−  ( +1
2 )

¢ ∪ ¡ ∗( 
2 )−  ∗( +1

2 )
¢

−1
2
ln (2(− 1)2 + ( − 1)2) if  ∈ ¡ ( 

3 )−  ( +1
3 )

¢ ∪ ¡ ∗( 
3 )−  ∗( +1

3 )
¢


Then (1) ln
¯̄̄

()


¯̄̄
converges to [10]Z

 ()∪∗()

()()  = 04859

via numerical calculation of each component of the integral and summation over

 ≥ 1. Closed-form expressions for the components again appear to be impossible.

Nakada [15] proved, as a corollary of his aforementioned result, that the powerful

Schmidt analog of Lévy’s constant is




= 04859540077 = ln(16257252237)

These are magnificient formulas, needless to say!

Complex continued fractions built upon the Eisenstein-Jacobi integers (rather

than the Gaussian integers) were introduced in [19], but no comparable ergodic theory

has been published, as far as is known.

We merely mention the Jacobi-Perron algorithm [20, 21, 22, 23, 24]

JPA( ) =

µ



−
j


k

1


−
¹
1



º¶
and the Podsypanin algorithm [25, 26, 27, 28]

MJPA( ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ




1


−
¹
1



º¶
if  ≥  ∧  6= 0µ

1


−
¹
1



º





¶
if    ∧  6= 0

0 if  =  = 0

for ( ) ∈ [0 1]× [0 1]. Both possess unique invariant densities but only the latter
has a closed-form expression:

MJPA( ) =
1

2

2 + + 

(1 + )(1 + )(1 + + )
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where

 =
2

12
+ Li2

µ
−1
2

¶
= 03740528265

If  denotes the common denominator in the 
th partial convergent to ( ), then

lim
→∞

1


ln() = −

1Z
0

1Z
0

ln (max{ }) MJPA( )   = 06695004121

almost certainly (we omit the complicated exact formula involving dilogarithms and

(3)). A precise estimate of the entropy associated with JPA would be good to see

someday.

0.5. Acknowledgement. I thank Asmus Schmidt for sending me in 1998 reprints

of his papers and helpful handwritten notes.
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