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The following scenario was examined in [1]: we toss  ideal coins, then toss those

which show tails after the first toss, then toss those which show tails after the second

toss, etc. Observe that if, at a given toss, only heads appear, then the process

immediately terminates. Suppose instead that we require the coins (all of which

showed heads) to be tossed again? Under such a change of rules, it is clear that the

final toss will always involve exactly one coin. This solitary coin is called the leader

and the process of selecting such is called an election.

Certain parameters governing the election (a random incomplete trie) are of inter-

est. In Figure 1, the size 7 = 10 is the number of vertices in the tree. The height

7 = 6 is the length of the longest root-to-leaf path, that is, the time duration to

choose a leader. Finally, 7 = 21 is the total number of coin tosses. Let  denote

likewise, given arbitrary  and a random election. It is surprising that E() = 2

for  ≥ 2; the random variables  and  are more complicated [2].

The following sums involving Bernoulli numbers [3] and binomial coefficients are

relevant and interesting [2, 4]:
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Figure 1: A typical election, starting with  = 7 candidates.
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are periodic functions of period 1 and very small amplitude. For example, |2()| 
1927× 10−5 for all . Each fluctuates symmetrically about 0. Define also [5]

() =
2

ln(2)2

∞X
=−∞
 6=0



µ
2

ln(2)

¶
exp (2)− 22()

where

() = (1− )Γ(−)−   0(1− )Γ(−)−  (1− )Γ0(−)
This again has period 1 and small amplitude — we have |()|  1398× 10−4 always
— fluctuations are symmetrical not about 0, but instead about

1Z
0

() = − 1

ln(2)2

∞X
=−∞
 6=0

¯̄̄̄


µ
1− 2

ln(2)

¶
Γ

µ
1− 2

ln(2)

¶¯̄̄̄2
≈ −1856× 10−10

Let us return to coin tossing. Prodinger [2] showed that
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asymptotically as  → ∞, assuming that the election is conducted exactly as de-
scribed earlier. If we alter the rules so that a draw between two coins is allowed (if

precisely two coins are left, they both are declared leaders), then
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For example, the constant for E() is 11812500478; the difference 
2(16 ln(2)) =

08899268328 quantifies how much is saved by stopping earlier to give E(̃). For

E() versus E(̃), the difference 
2(12 ln(2)) = 11865691104 is slightly greater.
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Fill, Mahmoud & Szpankowski [5] proved that
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¶
asymptotically as  → ∞, where 1 is the first Stieltjes constant [6]. As predicted

in [2], this is a nontrivial result. The constant 31166951643 also appears in [7];

another treatment is given by [8]. As far as is known, evaluating Var(̃) remains

open. The parameters , , ̃, ̃ deserve more attention. Random elections

yielding a predetermined number  1 of leaders are examined in [9].

0.1. Non-Ideal Coins. Instead of assuming that coins are ideal (independent

probability of tails = 12), let us suppose that coins “know” their count just before

each toss. More precisely, if 1 =  is the count before the first toss and  is

the count before the th toss,  ≥ 1, then at time , each coin enjoys independent
probability of tails = 1. Since +1 ≤ , the odds that any active candidate

becomes the leader improve with time. If +1 = 1, the election is over. If +1 = 0,

then +1 is overwritten with  and the coins are tossed again.
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for  ≥ 2, we obtain E(2) = 2, E(3) = 136, E(4) = 6529 and [10, 11]

lim
→∞E

() = 24417158788

A more complicated recursion gives lim→∞Var() = 2832554383

Is 1 the optimal probability? Replacing 1 everywhere by  for 0    2

in the preceding, we obtain
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18− 3− 22
3(3− )(2− )



Differentiating the recursion with respect to  allows us to find a minimum point

∗ = 10654388051 and thus [11]

lim
→∞E

(∗
) = 24348109638

No one has evaluated lim→∞Var(∗
), as far as is known. Related topics in random

elections are found in [12].
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0.2. Number Games. The following game, proposed by Gilbert [13], was revis-

ited by Fokkink [14]. A player  chooses a secret integer from 1 to . Another

player  attempts to guess ’s integer. After each guess,  tells  whether the guess

is too high, too low or correct. If  has guessed ’s integer, the game ends. If not,

then  may change the secret integer, but the new integer must be consistent with all

the information so far provided. Assuming both players adopt optimal, equilibrium,

randomized strategies, the expected number  of guesses is conjectured to satisfy

[14]

 ∼
ln()

ln(2)
− (0487)

asymptotically as →∞. It is further acknowledged in [14] that this formula may
require a small amplitude oscillation and [9] is cited. A verification of either claim

would be good to see.

Here is a comparatively simple game, proposed by Häggström [15] as a model for

the Swedish National Lottery. Every contestant chooses a positive integer. The

person who submits the smallest integer not chosen by anybody else is the winner.

(If no integer is chosen by exactly one person, then there is no winner.) Let us focus

on the case where there are exactly three contestants. Assuming all three adopt

optimal, equilibrium, randomized strategies, each of them independently draws an

integer according to a shifted geometric distribution:

P ( is selected) = (1− )−1

where  = 1 2 3    and  = 05436890126 satisfies the cubic equation

1

3
− 1

2
− 1


− 1 = 0

This constant is the reciprocal growth rate for the so-called Tribonacci sequence [16].

What can be said if instead there are exactly four contestants? The only other

reference found on this subject, [17], contains more elaborate analyses (assuming a

Poisson random count of players or an upper bound on playable numbers, if not both).
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