Quadratic Dirichlet L-Series

Steven Finch

July 15, 2005
Let $D=1$ or D be a fundamental discriminant [1]. The Kronecker-JacobiLegendre symbol (D / n) is a completely multiplicative function on the positive integers:

$$
\left(\frac{D}{n}\right)= \begin{cases}\prod_{j=1}^{k}\left(\frac{D}{p_{j}}\right)^{e_{j}} & \text { if } n \geq 2 \\ 1 & \text { if } n=1\end{cases}
$$

where $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ is the prime factorization of n,

$$
\left(\frac{D}{p}\right)= \begin{cases}1 & \text { if } p \nmid D \text { and } x^{2} \equiv D \bmod p \text { is solvable } \\ -1 & \text { if } p \nmid D \text { and } x^{2} \equiv D \bmod p \text { is not solvable } \\ 0 & \text { if } p \mid D\end{cases}
$$

assuming p is an odd prime, and

$$
\left(\frac{D}{2}\right)= \begin{cases}1 & \text { if } D \equiv 1,7 \bmod 8 \\ -1 & \text { if } D \equiv 3,5 \bmod 8 \\ 0 & \text { if } 2 \mid D\end{cases}
$$

The function $n \mapsto(D / n)$ is a real primitive Dirichlet character with modulus $|D|$. In particular, $(1 / n)=1$ always,

$$
\begin{gathered}
\left.(-3 / n)\right|_{n=1,2,3}=\{1,-1,0\} \\
\left.(-4 / n)\right|_{n=1,2,3,4}=\{1,0,-1,0\} \\
\left.(-7 / n)\right|_{n=1, \ldots, 7}=\{1,1,-1,1,-1,-1,0\} \\
\left.(-8 / n)\right|_{n=1, \ldots, 8}=\{1,0,1,0,-1,0,-1,0\} \\
\left.(5 / n)\right|_{n=1, \ldots, 5}=\{1,-1,-1,1,0\} \\
\left.(8 / n)\right|_{n=1, \ldots, 8}=\{1,0,-1,0,-1,0,1,0\}, \\
\left.(12 / n)\right|_{n=1, \ldots, 12}=\{1,0,0,0,-1,0,-1,0,0,0,1,0\} .
\end{gathered}
$$

[^0]Now define the Dirichlet L-series associated to (D / n) :

$$
L_{D}(z)=\sum_{n=1}^{\infty}\left(\frac{D}{n}\right) n^{-z}, \quad \operatorname{Re}(z)>1
$$

which can also be written as an infinite product over primes:

$$
L_{D}(z)=\prod_{p}\left(1-\left(\frac{D}{p}\right) p^{-z}\right)^{-1}, \quad \operatorname{Re}(z)>1
$$

If $D=1$, then $L_{1}(z)=\zeta(z)$, which can be analytically continued over the whole complex plane except for a simple pole at $z=1$. For all other $D, L_{D}(z)$ can be made into an entire function with special values

$$
L_{D}(1)=\left\{\begin{array}{lll}
\frac{\pi}{3 \sqrt{3}} & \text { if } D=-3 \\
\frac{\pi}{4} & \text { if } D=-4 \\
\frac{\pi h(D)}{\sqrt{-D}} & \text { if } D<-4, & \text { (Dirichlet class } \\
\frac{2 h(D) \ln (\varepsilon)}{\sqrt{D}} & \text { if } D>1 &
\end{array}\right.
$$

where $h(D)$ is the ideal class number in the wide sense of the quadratic field $\mathbb{Q}(\sqrt{D})$, and ε is the fundamental unit of the integer subring $\mathbb{Z}+((D+\sqrt{D}) / 2) \mathbb{Z}$. It follows that

$$
\begin{gathered}
L_{-7}(1)=\frac{\pi}{\sqrt{7}}, \quad L_{-8}(1)=\frac{\pi}{2 \sqrt{2}} \\
L_{5}(1)=\frac{2}{\sqrt{5}} \ln \left(\frac{1+\sqrt{5}}{2}\right), \quad L_{8}(1)=\frac{\ln (1+\sqrt{2})}{\sqrt{2}}, \quad L_{12}(1)=\frac{\ln (2+\sqrt{3})}{\sqrt{3}} .
\end{gathered}
$$

The fact that $L_{D}(1) \neq 0$ leads to a proof of Dirichlet's theorem on arithmetic progressions $r, q+r, 2 q+r, \ldots$: There are infinitely many primes congruent to r modulo q if q, r are coprime [2].

A modification of an L-series $L_{D}(z)$, defined by [3]

$$
L_{D}^{*}(z)= \begin{cases}(-D)^{z / 2} \pi^{-z / 2} \Gamma\left(\frac{z+1}{2}\right) L_{D}(z) & \text { if } D<0 \\ D^{z / 2} \pi^{-z / 2} \Gamma\left(\frac{z}{2}\right) L_{D}(z) & \text { if } D>0\end{cases}
$$

leads to the elegant functional equation $L_{D}^{*}(z)=L_{D}^{*}(1-z)$.

We turn attention to the points $z=2, z=3$ and $z=1 / 2$. If $D>0$, closed-form expressions for $L_{D}(2)$ are known:

$$
\begin{array}{ll}
L_{1}(2)=\frac{\pi^{2}}{6}, & L_{5}(2)=\frac{4 \pi^{2}}{25 \sqrt{5}} \\
L_{8}(2)=\frac{\pi^{2}}{8 \sqrt{2}}, & L_{12}(2)=\frac{\pi^{2}}{6 \sqrt{3}}
\end{array}
$$

but if $D<0$, only numerical approximations apply:

$$
\begin{gathered}
L_{-3}(2)=0.7813024128 \ldots \quad([4]), \\
L_{-4}(2)=G=0.9159655941 \ldots \quad(\text { Catalan's constant }[5]), \\
L_{-7}(2)=1.1519254705 \ldots, \quad L_{-8}(2)=1.0647341710 \ldots
\end{gathered}
$$

There is an unproven conjecture that $[6,7]$

$$
L_{-7}(2)=\frac{24}{7 \sqrt{7}} \int_{\pi / 3}^{\pi / 2} \ln \left|\frac{\tan (t)+\sqrt{7}}{\tan (t)-\sqrt{7}}\right| d t
$$

which has its origins in hyperbolic geometry and the Claussen function [8]. If $D<0$, closed-form expressions for $L_{D}(3)$ are known:

$$
\begin{array}{cc}
L_{-3}(3)=\frac{4 \pi^{3}}{81 \sqrt{3}}, & L_{-4}(3)=\frac{\pi^{3}}{32} \\
L_{-7}(3)=\frac{32 \pi^{3}}{343 \sqrt{7}}, & L_{-8}(3)=\frac{3 \pi^{3}}{64 \sqrt{2}}
\end{array}
$$

but if $D>0$, only numerical approximations apply:

$$
\begin{gathered}
\left.L_{1}(3)=\zeta(3)=1.2020569031 \ldots \quad \text { (Apéry's constant }[9]\right), \\
L_{5}(3)=0.8548247666 \ldots, \quad L_{8}(3)=0.9583804545 \ldots \\
L_{12}(3)=0.9900400194 \ldots
\end{gathered}
$$

By way of contrast, virtually nothing is known about $L_{D}(1 / 2)$ (regardless of the sign of D):

$$
\begin{gathered}
L_{1}(1 / 2)=-1.4603545088 \ldots \quad([9,10]) \\
L_{-3}(1 / 2)=0.4808675576 \ldots, \quad L_{-4}(1 / 2)=0.6676914571 \ldots \quad([10]) \\
L_{-7}(1 / 2)=1.1465856669 \ldots, \quad L_{-8}(1 / 2)=1.1004214095 \ldots
\end{gathered}
$$

$$
\begin{gathered}
L_{5}(1 / 2)=0.2317509475 \ldots \ldots, \quad L_{8}(1 / 2)=0.3736917129 \ldots \\
L_{12}(1 / 2)=0.4985570024 \ldots
\end{gathered}
$$

It is expected that $L_{D}(1 / 2) \neq 0$ always [11]; the Generalized Riemann Hypothesis (GRH) states that all zeroes of $L_{D}(z)$ in the strip $0 \leq \operatorname{Re}(z) \leq 1$ must lie on the central line $\operatorname{Re}(z)=1 / 2$. A deeper conjecture, known as the Grand Simplicity Hypothesis [12], asserts that the nonnegative imaginary parts of all such zeroes, taken as D varies across $1 \cup$ \{fundamental discriminants\}, form a linearly independent set over \mathbb{Q}.
0.1. Various Moments. A discussion of the first and second moments of $L_{D}(1)$, over all fundamental discriminants $-x<D<0$ and $0<D<x$, appears in [1]. We will focus on $L_{D}(1 / 2)$ here. Many of the numerical results are due to Conrey, Farmer, Keating, Rubinstein \& Snaith [13, 14].

Jutila [15, 16] proved that

$$
\begin{aligned}
\sum_{0<-D<x} L_{D}(1 / 2) & \sim \frac{3}{\pi^{2}}\left(a_{1,1} \ln (x)+a_{1,0}^{-}\right) x \\
& \sim(0.1070623764 \ldots) x \ln (x)+(0.0806503246 \ldots) x \\
\sum_{0<D<x} L_{D}(1 / 2) & \sim \frac{3}{\pi^{2}}\left(a_{1,1} \ln (x)+a_{1,0}^{+}\right) x \\
& \sim(0.1070623764 \ldots) x \ln (x)-(0.2556960505 \ldots) x
\end{aligned}
$$

as $x \rightarrow \infty$, where

$$
\begin{gathered}
P_{1}(s)=\prod_{p}\left(1-\frac{1}{(p+1) p^{s}}\right), \\
a_{1,1}=P_{1}(1) / 2=(0.7044422009 \ldots) / 2=0.3522211004 \ldots \\
a_{1,0}^{-}=\frac{P_{1}(1)}{2}\left(-1-\ln (\pi)+4 \gamma+\frac{\Gamma^{\prime}(3 / 4)}{\Gamma(3 / 4)}+4 \frac{P_{1}^{\prime}(1)}{P_{1}(1)}\right)=0.2653289331 \ldots \\
= \\
0.6175500336 \ldots-a_{1,1}=1.2648891165 \ldots-(1+\ln (2 \pi)) a_{1,1}, \\
a_{1,0}^{+}= \\
=\frac{P_{1}(1)}{2}\left(-1-\ln (\pi)+4 \gamma+\frac{\Gamma^{\prime}(1 / 4)}{\Gamma(1 / 4)}+4 \frac{P_{1}^{\prime}(1)}{P_{1}(1)}\right)=-0.8412062886 \ldots \\
=
\end{gathered}
$$

The fact that $a_{1,1}>0$ confirms that $L_{D}(1 / 2)>0$ for infinitely many $D<0$ and for infinitely many $D>0$. Interestingly, the expression

$$
\frac{P_{1}^{\prime}(1)}{P_{1}(1)}=\sum_{p} \frac{\ln (p)}{p^{2}+p-1}=0.4187575787 \ldots
$$

resembles an expression in [17] for which the denominator is $p^{2}-p+1$ instead of $p^{2}+p-1$.

Jutila [15] also proved that [13, 14]

$$
\begin{aligned}
\sum_{0<-D<x} L_{D}(1 / 2)^{2} \sim & \frac{3}{\pi^{2}}\left(a_{2,3} \ln (x)^{3}+a_{2,2}^{-} \ln (x)^{2}+a_{2,1}^{-} \ln (x)+a_{2,0}^{-}\right) x \\
\sim & (0.0037642089 \ldots) x \ln (x)^{3}+(0.0436478230 \ldots) x \ln (x)^{2} \\
& +(0.0239243562 \ldots) x \ln (x)-(0.0664474558 \ldots) x \\
\sum_{0<D<x} L_{D}(1 / 2)^{2} \sim & \frac{3}{\pi^{2}}\left(a_{2,3} \ln (x)^{3}+a_{2,2}^{+} \ln (x)^{2}+a_{2,1}^{+} \ln (x)+a_{2,0}^{+}\right) x \\
\sim & (0.0037642089 \ldots) x \ln (x)^{3}+(0.0081709895 \ldots) x \ln (x)^{2} \\
& -(0.1388692446 \ldots) x \ln (x)+(0.4058928120 \ldots) x
\end{aligned}
$$

as $x \rightarrow \infty$, where

$$
\begin{gathered}
P_{2}=\prod_{p}\left(1-\frac{4 p^{2}-3 p+1}{(p+1) p^{3}}\right)=0.2972100247 \\
a_{2,3}=P_{2} / 24=0.0123837510 \ldots
\end{gathered}
$$

$\left(a_{2,2}^{-}, a_{2,2}^{+}, a_{2,1}^{-}, a_{2,1}^{+}\right.$formulas appear in the Addendum). The work of Soundararajan [11], Diaconu, Goldfeld \& Hoffstein [18] and Zhang [19] gives rise to the conjecture [13, 14]:

$$
\begin{aligned}
& \sum_{0<-D<x} L_{D}(1 / 2)^{3} \sim \frac{3}{\pi^{2}}\left(a_{3,6} \ln (x)^{6}+\sum_{k=0}^{5} a_{3, k}^{-} \ln (x)^{k}\right) x+b^{-} x^{3 / 4} \\
& \sim(0.0000046457 \ldots) x \ln (x)^{6}+(0.0002447286 \ldots) x \ln (x)^{5} \\
&+(0.0039480538 \ldots) x \ln (x)^{4}+(0.0174395675 \ldots) x \ln (x)^{3} \\
&-(0.0110235234 \ldots) x \ln (x)^{2}-(0.0487615392 \ldots) x \ln (x) \\
&+(0.1926975162 \ldots) x-(0.07 \ldots) x^{3 / 4}, \\
& \sum_{0<D<x} L_{D}(1 / 2)^{3} \sim \quad \frac{3}{\pi^{2}}\left(a_{3,6} \ln (x)^{6}+\sum_{k=0}^{5} a_{3, k}^{+} \ln (x)^{k}\right) x+b^{+} x^{3 / 4} \\
& \sim \quad(0.0000046457 \ldots) x \ln (x)^{6}+(0.0001571591 \ldots) x \ln (x)^{5} \\
&+(0.0007916339 \ldots) x \ln (x)^{4}-(0.0094598480 \ldots) x \ln (x)^{3} \\
&+(0.0136781642 \ldots) x \ln (x)^{2}+(0.1643132466 \ldots) x \ln (x) \\
& \quad(0.5385378337 \ldots) x-(0.14 \ldots) x^{3 / 4}
\end{aligned}
$$

as $x \rightarrow \infty$, where

$$
\begin{gathered}
P_{3}=\prod_{p}\left(1-\frac{12 p^{5}-23 p^{4}+23 p^{3}-15 p^{2}+6 p-1}{(p+1) p^{6}}\right)=0.0440172316 \ldots \\
a_{3,6}=P_{3} / 2880=0.0000152837 \ldots
\end{gathered}
$$

$\left(a_{3,5}^{-}, a_{3,5}^{+}, a_{3,4}^{-}, a_{3,4}^{+}\right.$formulas appear in the Addendum). The exceptional term $x^{3 / 4}$ has no analog in the first and second moment cases. It is believed that [19]

$$
\begin{aligned}
b^{-}+b^{+} & =\frac{223 \sqrt{2}-253}{192}\left(\frac{\Gamma(1 / 8)^{4}}{\Gamma(3 / 8)^{4}}+\frac{\Gamma(1 / 8) \Gamma(5 / 8)^{3}}{\Gamma(3 / 8) \Gamma(7 / 8)^{3}}\right) \pi Q \\
& =\frac{4}{3}(-0.1615725999 \ldots)=-0.2154301332 \ldots
\end{aligned}
$$

where [20]

$$
\begin{aligned}
Q= & \left(\frac{\sqrt{2}-1}{\sqrt{2}}\right)^{3} \zeta\left(\frac{1}{2}\right)^{7} \\
& \quad \times \prod_{p>2}\left(1-\frac{14}{p^{3 / 2}}-\frac{1}{p^{2}}+\frac{78}{p^{5 / 2}}-\frac{84}{p^{3}}-\frac{58}{p^{7 / 2}}+\frac{154}{p^{4}}-\frac{70}{p^{9 / 2}}-\frac{49}{p^{5}}+\frac{64}{p^{11 / 2}}-\frac{22}{p^{6}}+\frac{1}{p^{7}}\right) \\
= & -0.0019314869 \ldots
\end{aligned}
$$

(might separate expressions for b^{+}and b^{-}be possible?) For arbitrary $n \geq 1$, Conrey \& Farmer [21] conjectured that

$$
\sum_{|D|<x} L_{D}(1 / 2)^{n} \sim \frac{6}{\pi^{2}} a_{n, N} x \ln (x)^{N}
$$

as $x \rightarrow \infty$, where $N=n(n+1) / 2$ and

$$
a_{n, N}=\prod_{j=1}^{n} \frac{j!}{(2 j)!} \cdot \prod_{p} \frac{\left(1-\frac{1}{p}\right)^{N}}{1+\frac{1}{p}}\left\{\frac{1}{2}\left(\left(1-\frac{1}{\sqrt{p}}\right)^{-n}+\left(1+\frac{1}{\sqrt{p}}\right)^{-n}\right)+\frac{1}{p}\right\}
$$

This is based in part on research in random matrix theory by Keating \& Snaith [22, 23].
0.2. Dedekind Zeta Function. Given a fundamental discriminant D, define the Dedekind zeta function of $\mathbb{Q}(\sqrt{D})$ to be

$$
\begin{aligned}
\zeta_{D}(z) & =\zeta(z) \cdot L_{D}(z) \\
& =\prod_{\left(\frac{D}{p}\right)=1}\left(1-p^{-z}\right)^{-2} \cdot \prod_{\left(\frac{D}{p}\right)=-1}\left(1-p^{-2 z}\right)^{-1} \cdot \prod_{\left(\frac{D}{p}\right)=0}\left(1-p^{-z}\right)^{-1}
\end{aligned}
$$

(the latter formula is valid for $\operatorname{Re}(z)>1$). For example, if $D=-4$ (which corresponds to the ring \mathcal{O}_{-1} of Gaussian integers), we have

$$
\zeta_{-4}(z)=\prod_{\substack{p \equiv 1 \\ \bmod 4}}\left(1-p^{-z}\right)^{-2} \cdot \prod_{\substack{p \equiv 3 \\ \bmod 4}}\left(1-p^{-2 z}\right)^{-1} \cdot\left(1-2^{-z}\right)^{-1}
$$

and if $D=-3$ (which corresponds to the ring \mathcal{O}_{-3} of Eisenstein-Jacobi integers), we have

$$
\zeta_{-3}(z)=\prod_{\substack{p \equiv 1 \\ \bmod 3}}\left(1-p^{-z}\right)^{-2} \cdot \prod_{\substack{p \equiv 2 \\ \bmod 3}}\left(1-p^{-2 z}\right)^{-1} \cdot\left(1-3^{-z}\right)^{-1} .
$$

Since $\zeta_{D}(z)$ has a simple pole at $z=1$, its Laurent expansion at $z=1$ is

$$
\zeta_{D}(z)=c_{-1}(z-1)^{-1}+c_{0}+c_{1}(z-1)+c_{2}(z-1)^{2}+\cdots, \quad c_{-1} \neq 0 .
$$

Define the Euler-Kronecker constant of $\mathbb{Q}(\sqrt{D})$ to be

$$
\gamma_{D}=\frac{c_{0}}{c_{-1}}=\gamma+\frac{L_{D}^{\prime}(1)}{L_{D}(1)}
$$

which generalizes Euler's constant $\gamma=0.5772156649 \ldots$ [24]. (In the case $D=1$, we merely have $\zeta_{1}(z)=\zeta(z)$ and thus $c_{-1}=1, c_{0}=\gamma$). It follows that [25, 26, 27, 28]

$$
\begin{gather*}
\left.\gamma_{-4}=\ln \left(2 \pi e^{2 \gamma} \frac{\Gamma\left(\frac{3}{4}\right)^{2}}{\Gamma\left(\frac{1}{4}\right)^{2}}\right)=0.8228252496 \ldots \quad \text { (Sierpinski's constant }[29]\right) \\
\gamma_{-3}=\ln \left(2 \pi e^{2 \gamma} \frac{\Gamma\left(\frac{2}{3}\right)^{3}}{\Gamma\left(\frac{1}{3}\right)^{3}}\right)=0.9454972808 \ldots \quad([30]) \tag{30}
\end{gather*}
$$

alternatively, by the Kronecker limit formula [31],

$$
\begin{gathered}
\gamma_{-4}=\frac{\pi}{3}-\ln (4)+2 \gamma-4 \sum_{k=1}^{\infty} \ln \left(1-e^{-2 \pi k}\right)=\frac{1}{2}(1.1870859072 \ldots) \ln (4), \\
\gamma_{-3}=\frac{\pi}{2 \sqrt{3}}-\ln (3)+2 \gamma-4 \sum_{k=1}^{\infty} \ln \left|1-e^{-2 \pi i \omega k}\right|=\frac{1}{2}(1.7212574274 \ldots) \ln (3)
\end{gathered}
$$

where $\omega=-(1+i \sqrt{3}) / 2$ and i is the imaginary unit. Further, we have

$$
\gamma_{-7}=\ln \left(2 \pi e^{2 \gamma} \frac{\Gamma\left(\frac{3}{7}\right) \Gamma\left(\frac{5}{7}\right) \Gamma\left(\frac{6}{7}\right)}{\Gamma\left(\frac{1}{7}\right) \Gamma\left(\frac{2}{7}\right) \Gamma\left(\frac{4}{7}\right)}\right)=0.5928513548 \ldots=\frac{1}{2}(0.6093306571 \ldots) \ln (7)
$$

$$
\gamma_{-8}=\ln \left(2 \pi e^{2 \gamma} \frac{\Gamma\left(\frac{5}{8}\right) \Gamma\left(\frac{7}{8}\right)}{\Gamma\left(\frac{1}{8}\right) \Gamma\left(\frac{3}{8}\right)}\right)=0.5565042591 \ldots=\frac{1}{2}(0.5352439565 \ldots) \ln (8) .
$$

In the event that $D>0$, the only known formulas are $[28,32,33]$

$$
\begin{aligned}
\gamma_{5} & =\ln \left(2 \pi e^{2 \gamma}\right)+\frac{R\left(\frac{1}{5}\right)-R\left(\frac{2}{5}\right)-R\left(\frac{3}{5}\right)+R\left(\frac{4}{5}\right)}{2 \ln \left(\frac{1+\sqrt{5}}{2}\right)}=1.4048951416 \ldots \\
& =\frac{1}{2}(1.7458208617 \ldots) \ln (5), \\
\gamma_{8} & =\ln \left(2 \pi e^{2 \gamma}\right)+\frac{R\left(\frac{1}{8}\right)-R\left(\frac{3}{8}\right)-R\left(\frac{5}{8}\right)+R\left(\frac{7}{8}\right)}{2 \ln (1+\sqrt{2})}=1.2093306309 \ldots \\
& =\frac{1}{2}(1.1631302027 \ldots) \ln (8), \\
\gamma_{12} & =\ln \left(2 \pi e^{2 \gamma}\right)+\frac{R\left(\frac{1}{12}\right)-R\left(\frac{5}{12}\right)-R\left(\frac{7}{12}\right)+R\left(\frac{11}{12}\right)}{2 \ln (2+\sqrt{3})}=1.0539656082 \ldots \\
& =\frac{1}{2}(0.8482939255 \ldots) \ln (12)
\end{aligned}
$$

where

$$
R(x)=-\left.\frac{\partial^{2}}{\partial z^{2}} \zeta(z, x)\right|_{z=0}
$$

and $\zeta(z, x)$ is the second derivative of the Hurwitz zeta function, defined when $0<$ $x \leq 1$ by $\zeta(z, x)=\sum_{n=0}^{\infty}(n+x)^{-z}$ for $\operatorname{Re}(z)>1$ and by analytic continuation elsewhere. Of course, $\zeta(z, 1)=\zeta(z), \zeta(z, 1 / 2)=\left(2^{z}-1\right) \zeta(z), \zeta^{\prime}(0)=-\ln (2 \pi) / 2$ and

$$
\begin{gathered}
R(1)=-\zeta^{\prime \prime}(0)=-\tilde{\gamma}-\frac{1}{2} \gamma^{2}+\frac{1}{24} \pi^{2}+\frac{1}{2} \ln (2 \pi)^{2}=2.0063564559 \ldots \\
\lim _{x \rightarrow 0^{+}} R(x)=-\infty, \quad R\left(\frac{1}{2}\right)=\ln (2) \ln (2 \pi)+\frac{1}{2} \ln (2)^{2}=1.5141458137 \ldots
\end{gathered}
$$

where $\tilde{\gamma}=-0.0728158454 \ldots$ is the first Stieltjes constant [34], but little else is known about special values of $R(x)$.

For small $|D|, \gamma_{D}$ is positive. The first $D<0$ for which γ_{D} is negative is $D=-47$, and the first $D>0$ for which γ_{D} is negative is $D=337$. It can be shown that $\lim _{|D| \rightarrow \infty} \gamma_{D} / \ln \sqrt{|D|}=0$. For arbitrary number fields (finite algebraic extensions of \mathbb{Q}), a corresponding limit superior is also 0 , assuming the truth of GRH. The corresponding limit inferior, however, appears to lie between -0.26049 and -0.17849 , and its exact value is open $[31,35]$. We wonder if similar optimization problems can be studied involving higher-order coefficients c_{j} in the Laurent expansion of $\zeta_{D}(z)$.
0.3. Prime Products. Formulas such as $[36,37]$

$$
\begin{gathered}
\prod_{p} \frac{p^{2}+1}{p^{2}-1}=\frac{5}{2}, \quad \prod_{p} \frac{p^{3}+1}{p^{3}-1}=\frac{945 \zeta(3)^{2}}{\pi^{6}}, \\
\prod_{p \equiv 1 \bmod 4} \frac{p^{2}+1}{p^{2}-1}=\frac{12 G}{\pi^{2}}, \quad \prod_{p \equiv 1 \bmod 4} \frac{p^{3}+1}{p^{3}-1}=\frac{105 \zeta(3)}{4 \pi^{3}}, \\
\prod_{p \equiv 3 \bmod 4} \frac{p^{2}+1}{p^{2}-1}=\frac{\pi^{2}}{8 G}, \quad \prod_{p \equiv 3 \bmod 4} \frac{p^{3}+1}{p^{3}-1}=\frac{28 \zeta(3)}{\pi^{3}}
\end{gathered}
$$

offer hope that prime products $\prod_{p \equiv k \bmod l}\left(p^{m}+1\right) /\left(p^{m}-1\right)$ might always be expressed via L-series values, where $m \geq 2$. Indeed, we have

$$
\begin{aligned}
\prod_{p \equiv 1 \bmod 3} \frac{p^{2}+1}{p^{2}-1} & =\frac{27 L_{-3}(2)}{2 \pi^{2}},
\end{aligned} \quad \prod_{p \equiv 1 \bmod 3} \frac{p^{3}+1}{p^{3}-1}=\frac{15 \sqrt{3} \zeta(3)}{\pi^{3}}, ~ 子 \prod_{p \equiv 2 \bmod 3} \frac{p^{2}+1}{p^{2}-1}=\frac{4 \pi^{2}}{27 L_{-3}(2)}, \quad \prod_{p \equiv 2 \bmod 3} \frac{p^{3}+1}{p^{3}-1}=\frac{39 \sqrt{3} \zeta(3)}{2 \pi^{3}} .
$$

More complicated examples include

$$
\begin{gathered}
\prod_{p \equiv 2 \text { or } 3 \bmod 5} \frac{p^{2}+1}{p^{2}-1}=\sqrt{5}, \quad \prod_{p \equiv 2 \text { or } 3 \bmod 5} \frac{p^{3}+1}{p^{3}-1}=\frac{124 \zeta(3)}{125 L_{5}(3)}, \\
\prod_{p \equiv 7 \bmod 8} \frac{p^{2}+1}{p^{2}-1}=\frac{\pi^{2}}{\sqrt{64 \sqrt{2} G L_{-8}(2)}}, \quad \prod_{p \equiv 7 \bmod 8} \frac{p^{3}+1}{p^{3}-1}=\frac{\sqrt{1792 \sqrt{2} \zeta(3) L_{8}(3)}}{\sqrt{3} \pi^{3}}
\end{gathered}
$$

and we wonder whether products over $p \equiv 2 \bmod 5$, or products over $p \equiv 3 \bmod 5$, dash the hope. Finally, series such as

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{1}{(3 n+1)^{2}}= \frac{1}{2}\left(\frac{4 \pi^{2}}{27}+L_{-3}(2)\right), \quad \sum_{n=0}^{\infty} \frac{1}{(3 n+1)^{3}}=\frac{2}{81 \sqrt{3}} \pi^{3}+\frac{13}{27} \zeta(3) \\
& \sum_{n=0}^{\infty} \frac{1}{(3 n+2)^{2}}= \frac{1}{2}\left(\frac{4 \pi^{2}}{27}-L_{-3}(2)\right), \quad \sum_{n=0}^{\infty} \frac{1}{(3 n+2)^{3}}=-\frac{2}{81 \sqrt{3}} \pi^{3}+\frac{13}{27} \zeta(3), \\
& \sum_{n=0}^{\infty} \frac{1}{(5 n+2)^{2}}+\sum_{n=0}^{\infty} \frac{1}{(5 n+3)^{2}}=\frac{10-2 \sqrt{5}}{125} \pi^{2} \\
& \sum_{n=0}^{\infty} \frac{1}{(5 n+2)^{3}}+\sum_{n=0}^{\infty} \frac{1}{(5 n+3)^{3}}=\frac{62}{125} \zeta(3)-\frac{1}{2} L_{5}(3)
\end{aligned}
$$

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{1}{(8 n+7)^{2}}=\frac{1}{4}\left(\frac{1+\sqrt{2}}{8 \sqrt{2}} \pi^{2}-G-L_{-8}(2)\right), \\
\sum_{n=0}^{\infty} \frac{1}{(8 n+7)^{3}}=-\frac{1}{4}\left(\frac{3+2 \sqrt{2}}{64 \sqrt{2}} \pi^{3}-\frac{7}{8} \zeta(3)-L_{8}(3)\right)
\end{gathered}
$$

raise similar issues.
0.4. Primitive Characters. Let \mathbb{Z}_{n}^{*} denote the group (under multiplication modulo n) of integers relatively prime to n, and let \mathbb{C}^{*} denote the group (under ordinary multiplication) of nonzero complex numbers. A Dirichlet character modulo n is a homomorphism $\chi: \mathbb{Z}_{n}^{*} \rightarrow \mathbb{C}^{*}$. It can be shown that $\chi(k)$ is a $\varphi(n)^{\text {th }}$ root of unity for any $k \in \mathbb{Z}_{n}^{*}$, where φ is the Euler totient function. In particular, if χ is real-valued, then $\chi(k)= \pm 1$ for any k. We have $[38,39,40,41]$

$$
\begin{aligned}
& \text { \# complex Dirichlet characters }=\sum_{n \leq N} \varphi(n) \sim \frac{3}{\pi^{2}} N^{2}, \\
& \text { of modulus } \leq N
\end{aligned}
$$

$\begin{aligned} & \text { \# real Dirichlet characters } \\ & \text { of modulus } \leq N\end{aligned}=\sum_{\substack{n \leq N, n \equiv 2,6 \bmod 8}} 2^{\omega(n)-1}+\sum_{\substack{n \leq N, n \equiv 1,3,4,5,7 \bmod 8}} 2^{\omega(n)}+\sum_{\substack{n \leq N, n \equiv 0 \bmod 8}} 2^{\omega(n)+1}$

$$
\sim \frac{6}{\pi^{2}} N \cdot \ln (N)
$$

as $N \rightarrow \infty$, where $\omega(n)$ denotes the number of distinct prime factors of n. The constant $6 / \pi^{2}$ appears in [42] as the probability that two randomly chosen integers are coprime; the above three-fold summation also counts the average number of solutions of $x^{2}=1$ in \mathbb{Z}_{n}^{*}. Why should a coprimality probability and square roots of unity mod n be at all related to real characters $\bmod n ?$

Let m be a multiple of n. Extend the domain of χ to \mathbb{Z} via the formula

$$
\chi(k)= \begin{cases}\chi(j) & \text { if } \operatorname{gcd}(n, k)=1 \text { and } j \equiv k \bmod n, 1 \leq j \leq n \\ 0 & \text { otherwise }\end{cases}
$$

and then define a new induced character $\bmod m$:

$$
\hat{\chi}(k)= \begin{cases}\chi(k) & \text { if } \operatorname{gcd}(m, k)=1 \\ 0 & \text { otherwise }\end{cases}
$$

For example, if χ is the character $\bmod 3$ with $\chi(1)=1, \chi(2)=-1$ and $\chi(3)=0$, note that

$$
\left.\chi(k)\right|_{k=1, \ldots, 6}=\{1,-1,0,1,-1,0\} \longmapsto\{1,0,0,0,-1,0\}=\left.\hat{\chi}(k)\right|_{k=1, \ldots, 6}
$$

As another example, if χ is the character $\bmod 3$ with $\chi(1)=1, \chi(2)=1$ and $\chi(3)=0$, note that

$$
\left.\chi(k)\right|_{k=1, \ldots, 6}=\{1,1,0,1,1,0\} \longmapsto\{1,0,0,0,1,0\}=\left.\hat{\chi}(k)\right|_{k=1, \ldots, 6}
$$

As a third and fourth example, if χ is the character $\bmod 1$ with $\chi(1)=1$, note that

$$
\begin{aligned}
\left.\chi(k)\right|_{k=1,2}=\{1,1\} & \longmapsto\{1,0\}=\left.\hat{\chi}(k)\right|_{k=1,2}, \\
\left.\chi(k)\right|_{k=1,2,3,4}=\{1,1,1,1\} & \longmapsto\{1,0,1,0\}=\left.\hat{\chi}(k)\right|_{k=1,2,3,4}
\end{aligned}
$$

These are meant to prepare us for the following definition. A primitive character $\bmod m$ is a character that is not induced by a character $\bmod n$ for any divisor n of m other than m itself. The first two examples demonstrate that no primitive character $\bmod 6$ exists. Likewise, no primitive character mod 2 exists, but the mod 4 character χ with $\chi(1)=1, \chi(2)=0, \chi(3)=-1$ and $\chi(4)=0$ is primitive.

Define a new multiplicative function

$$
\psi(n)=\sum_{d \mid n} \varphi(d) \mu(n / d)
$$

where μ is the Möbius mu function. Also, $\psi(p)=p-2$ and $\psi\left(p^{l}\right)=p^{l-2}(p-1)^{2}$ for $l \geq 2$, for any prime p. We have [43, 44]

$$
\begin{aligned}
& \text { \# complex primitive Dirichlet } \\
& \text { characters of modulus } \leq N
\end{aligned}=\sum_{n \leq N} \psi(n) \sim \frac{18}{\pi^{4}} N^{2},
$$

as $N \rightarrow \infty$, where D varies across the set $1 \cup\{$ fundamental discriminants $\}$. For future convenience, the latter sum can be written more explicitly as $\sum_{n \leq N} \delta(n)$, where

$$
\delta(n)= \begin{cases}1 & \text { if } n=1, \\ 1 & \text { if either } n \text { or }-n \text { is a fundamental discriminant (not both) } \\ 2 & \text { if } n \text { and }-n \text { are fundamental discriminants } \\ 0 & \text { otherwise }\end{cases}
$$

In fact, $\delta(n)$ is multiplicative with $\delta(2)=0, \delta(4)=1, \delta(8)=2, \delta\left(2^{l}\right)=0$ for $l>3$, $\delta(p)=1$ for prime $p>2$ and $\delta\left(p^{l}\right)=0$ for $l>1$; thus asymptotic techniques in [41] are applicable.

A less stringent version of primitiveness is also available. A weakly primitive character mod m is a character that does not coincide (as a function $\mathbb{Z} \rightarrow \mathbb{C}^{*}$) with
a character mod n for any divisor n of m other than m itself. For example, $\{1,0\}$ is weakly primitive as a character $\bmod 2$, but not as a character $\bmod 4$, since $\{1,0,1,0\}$ is the same as $\{1,0\}$ concatenated with itself. Both earlier-mentioned characters mod 6 are weakly primitive as well, but not $\bmod 12$.

Define another multiplicative function $\xi(n)$ with $\xi\left(p^{l}\right)=\psi\left(p^{l}\right)$ for $l \geq 2$, but $\xi(p)=p-1$ instead. A Dirichlet convolution-type formula for $\xi(n)$ is also available:

$$
\xi(n)=\sum_{d \mid \kappa^{\prime}(n)} \psi(n / d)
$$

where $\kappa^{\prime}(n)$ is the product of primes that occur with multiplicity 1 when factoring n (using notation from [45]). We have [46, 47]

$$
\begin{aligned}
& \text { \# complex, weakly primitive Dirichlet } \\
& \text { characters of modulus } \leq N
\end{aligned}=\sum_{n \leq N} \xi(n) \sim \frac{1}{2} \rho N^{2}
$$

where

$$
\begin{aligned}
\rho & =\prod_{p}\left(1-\frac{p^{2}+p-1}{p^{4}}\right)=\frac{6}{\pi^{2}} \prod_{p}\left(1+\frac{1}{p^{3}+p^{2}-1}\right)^{-1} \\
& =\frac{6}{\pi^{2}}(1.1344121384 \ldots)^{-1}=0.5358961538 \ldots
\end{aligned}
$$

as $N \rightarrow \infty$.
Define one last multiplicative function $\eta(n)$ with $\eta(2)=1, \eta(4)=1, \eta(8)=2$, $\eta\left(2^{l}\right)=0$ for $l>3, \eta(p)=2$ for prime $p>2$ and $\eta\left(p^{l}\right)=0$ for $l>1$. A Dirichlet convolution-type formula for $\eta(n)$ is also available:

$$
\eta(n)=\sum_{d \mid \kappa^{\prime}(n)} \delta(n / d)
$$

We have [41]

$$
\begin{aligned}
& \text { \# real, weakly primitive Dirichlet } \\
& \text { characters of modulus } \leq N
\end{aligned}=\sum_{n \leq N} \eta(n) \sim \sigma N \ln (N)
$$

where

$$
\sigma=\frac{6}{\pi^{2}} \prod_{p}\left(1-\frac{2}{p(p+1)}\right)=\frac{36}{\pi^{4}} \prod_{p}\left(1-\frac{1}{(p+1)^{2}}\right)=0.2867474284 \ldots
$$

as $N \rightarrow \infty$. The constant σ appears in [42] as the probability that three randomly chosen integers are pairwise coprime; it is also unexpectedly connected to the asymptotics of the average number of solutions of $x^{3}=0$ in \mathbb{Z}_{n}. Why should a coprimality probability and cubic roots of nullity $\bmod n$ be at all related to weakly primitive characters mod n ?
0.5. Addendum. Writing exact expressions for $L_{D}(1 / 2)$ moments is difficult. We have, for example [48],

$$
a_{2,2}^{ \pm}=c^{ \pm}-3 a_{2,3}, \quad a_{2,1}^{ \pm}=d^{ \pm}-2 c^{ \pm}+6 a_{2,3}
$$

where

$$
\begin{aligned}
& c^{-}=\frac{P_{2}}{4}\left(\frac{1}{2} \frac{\Gamma^{\prime}(3 / 4)}{\Gamma(3 / 4)}+U\right)=0.1807468351 \ldots, \quad c^{+}=\frac{P_{2}}{4}\left(\frac{1}{2} \frac{\Gamma^{\prime}(1 / 4)}{\Gamma(1 / 4)}+U\right)=0.0640327313 \ldots \\
& d^{-}=\frac{P_{2}}{2}\left[\left(\frac{4}{P_{2}} c^{-}\right)^{2}-V\right]=0.3658991414 \ldots, \quad d^{+}=\frac{P_{2}}{2}\left[\left(\frac{4}{P_{2}} c^{+}\right)^{2}-V\right]=-0.4030985462 \ldots
\end{aligned}
$$

and

$$
\begin{aligned}
U & =-\frac{1}{2} \ln (\pi)+3 \gamma+\sum_{p} \frac{5 p^{2}-6 p+3}{(p-1)\left(p^{3}+2 p^{2}-2 p+1\right)} \ln (p) \\
V & =\gamma^{2}+2 \tilde{\gamma}+\sum_{p} \frac{p\left(5 p^{5}-5 p^{4}+4 p^{3}+4 p^{2}-5 p+1\right)}{(p-1)^{2}\left(p^{3}+2 p^{2}-2 p+1\right)^{2}} \ln (p)^{2}
\end{aligned}
$$

To obtain $a_{2,0}^{-}$or $a_{2,0}^{+}$involves even more complicated formulas. As another example [48],

$$
a_{3,5}^{ \pm}=c^{ \pm}-6 a_{3,6}, \quad a_{3,4}^{ \pm}=d^{ \pm}-5 c^{ \pm}+30 a_{3,6}
$$

where

$$
\begin{aligned}
& c^{-}=\frac{P_{3}}{240}\left(\frac{1}{2} \frac{\Gamma^{\prime}(3 / 4)}{\Gamma(3 / 4)}+U\right)=0.0008968276 \ldots, \quad c^{+}=\frac{P_{3}}{240}\left(\frac{1}{2} \frac{\Gamma^{\prime}(1 / 4)}{\Gamma(1 / 4)}+U\right)=0.0006087355 \ldots \\
& d^{-}=\frac{P_{3}}{48}\left[\left(\frac{240}{P_{3}} c^{-}\right)^{2}-V\right]=0.0170142017 \ldots,
\end{aligned} d^{+}=\frac{P_{3}}{48}\left[\left(\frac{240}{P_{3}} c^{+}\right)^{2}-V\right]=0.0051895362 \ldots, ~ l
$$

and

$$
\begin{gathered}
U=-\frac{1}{2} \ln (\pi)+4 \gamma+\sum_{p} \frac{4\left(3 p^{3}-3 p^{2}+3 p-1\right)}{(p-1)\left(p^{4}+4 p^{3}-3 p^{2}+3 p-1\right)} \ln (p), \\
V=\gamma^{2}+2 \tilde{\gamma}+\sum_{p} \frac{p\left(10 p^{7}+5 p^{5}+17 p^{4}-31 p^{3}+20 p^{2}-6 p+1\right)}{(p-1)^{2}\left(p^{4}+4 p^{3}-3 p^{2}+3 p-1\right)^{2}} \ln (p)^{2} .
\end{gathered}
$$

Again, $a_{3, k}^{-}$or $a_{3, k}^{+}$are increasingly complicated for decreasing $k \leq 3$.

For arbitrary $n \geq 1$, the rational function in p for the infinite series within U, needed to compute $c^{ \pm}$and $a_{n, N-1}^{ \pm}$, is [48]

$$
g_{n}(p)=\frac{n+1}{p-1}+\frac{-(\sqrt{p}-1)^{-n-1}+(\sqrt{p}+1)^{-n-1}}{(\sqrt{p}-1)^{-n}+(\sqrt{p}+1)^{-n}+2 p^{-n / 2-1}} .
$$

For arbitrary $n \geq 2$, the rational function in p for the infinite series within V, needed to compute $d^{ \pm}$and $a_{n, N-2}^{ \pm}$, is

$$
\frac{p}{(p-1)^{2}}+g_{n}(p)^{2}-\frac{(\sqrt{p}-1)^{-n-2}+(\sqrt{p}+1)^{-n-2}}{(\sqrt{p}-1)^{-n}+(\sqrt{p}+1)^{-n}+2 p^{-n / 2-1}} .
$$

See also [49, 50].
The constant $\sum \ln (p) /\left(p^{2}+p+1\right)$ appears explicitly in [51] with regard to the reciprocal sum of the Dedekind totient. The conjectured expression for $L_{-7}(2)$ is, in fact, a theorem due to Zagier [52]; other representations appear in [53, 54]. More on Euler-Kronecker constants is found in [55, 56]. We hope to report on Mathar's calculations later [57, 58].

References

[1] S. R. Finch, Class number theory, unpublished note (2005).
[2] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 146-156; MR0434929 (55 \#7892).
[3] H. Cohen, A Course in Computational Algebraic Number Theory, SpringerVerlag, 1993, pp. 232, 261; MR1228206 (94i:11105).
[4] S. R. Finch, Addendum, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 601-602.
[5] S. R. Finch, Catalan's constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 53-59.
[6] D. H. Bailey and J. M. Borwein, Experimental mathematics: examples, methods and implications, Notices Amer. Math. Soc. 52 (2005) 502-514; http://crd.lbl.gov/~ dhbailey/dhbpapers/; MR2140093.
[7] D. H. Bailey, J. M. Borwein, V. Kapoor and E. W. Weisstein, Ten problems in experimental mathematics, Amer. Math. Monthly 113 (2006) 481-509; http://crd.lbl.gov/~dhbailey/dhbpapers/; MR2231135 (2007b:65001).
[8] S. R. Finch, Volumes of hyperbolic 3-manifolds, unpublished note (2004).
[9] S. R. Finch, Apéry's constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 40-53.
[10] S. R. Finch, Madelung's constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 76-81.
[11] K. Soundararajan, Nonvanishing of quadratic Dirichlet L-functions at $s=1 / 2$, Annals of Math. 152 (2000) 447-488; MR1804529 (2001k:11164).
[12] M. Rubinstein and P. Sarnak, Chebyshev's bias, Experiment. Math. 3 (1994) 173-197; MR1329368 (96d:11099).
[13] J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein and N. C. Snaith, Integral moments of L-functions, Proc. London Math. Soc. 91 (2005) 33-104; math.NT/0206018; MR2149530 (2006j:11120).
[14] M. O. Rubinstein, L-function calculator: a C++ class library and command line interface for computing zeros and values of L-functions, http://pmmac03.math.uwaterloo.ca/ ${ }^{\text {mrubinst/L_function_public/L.html. }}$
[15] M. Jutila, On the mean value of $L(1 / 2, \chi)$ for real characters, Analysis 1 (1981) 149-161; MR0632705 (82m:10065).
[16] E. Stankus, The mean value of $L\left(1 / 2, \chi_{d}\right)$ for $d \equiv l(\bmod D)$ (in Russian), Litovsk. Mat. Sb. 23 (1983) 169-177; Engl. transl. in Lithuanian Math. J. 23 (1983) 215-221; MR0706019 (84m:10030).
[17] S. R. Finch, Euler totient constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 115-118.
[18] A. Diaconu, D. Goldfeld and J. Hoffstein, Multiple Dirichlet series and moments of zeta and L-functions, Compositio Math. 139 (2003) 297-360; math.NT/0110092; MR2041614 (2005a:11124).
[19] Q. Zhang, On the cubic moment of quadratic Dirichlet L-functions, Math. Res. Lett. 12 (2005) 413-424; MR2150894 (2006h:11102).
[20] P. Sebah, Calculation of Zhang's constant, unpublished note (2005).
[21] J. B. Conrey and D. W. Farmer, Mean values of L-functions and symmetry, Internat. Math. Res. Notices 2000, n. 17, 883-908; math.NT/9912107; MR1784410 (2001i:11111).
[22] J. P. Keating and N. C. Snaith, Random matrix theory and L-functions at $s=$ 1/2, Comm. Math. Phys. 214 (2000) 91-110; MR1794267 (2002c:11108).
[23] J. P. Keating and N. C. Snaith, Random matrices and L-functions, J. Phys. A 36 (2003) 2859-2881; MR1986396 (2004d:11090).
[24] S. R. Finch, Euler-Mascheroni constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 28-40.
[25] E. Landau, Über die zu einem algebraischen Zahlkörper gehörige Zetafunktion und die Ausdehnung der Tschebyschefschen Primzahlentheorie aus das Problem der Verteilung der Primideale, J. Reine Angew. Math. 125 (1903) 64-188; also in Collected Works, v. 1, ed. L. Mirsky, I. J. Schoenberg, W. Schwarz, and H. Wefelscheid, Thales Verlag, 1983, pp. 201-325.
[26] A. Selberg and S. Chowla, On Epstein's zeta-function, J. Reine Angew. Math. 227 (1967) 86-110; MR0215797 (35 \#6632).
[27] J. Elstrodt, Note on the Selberg trace formula for the Picard group, Abh. Math. Sem. Univ. Hamburg 55 (1985) 207-209; MR0831529 (87g:11062).
[28] A. Feuerverger and G. Martin, Biases in the Shanks-Rényi prime number race, Experim. Math. 9 (2000) 535-570; MR1806291 (2002d:11111).
[29] S. R. Finch, Sierpinski's constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 122-125.
[30] S. R. Finch, Gauss' lemniscate constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 420-423.
[31] Y. Ihara, On the Euler-Kronecker constants of global fields and primes with small norms, Algebraic Geometry and Number Theory, ed. V. Ginzburg, Birkhäuser Boston, 2006, pp. 407-451; MR2263195 (2007h:11127).
[32] C. Deninger, On the analogue of the formula of Chowla and Selberg for real quadratic fields, J. Reine Angew. Math. 351 (1984) 171-191; MR0749681 (86f:11085).
[33] S. Kanemitsu, On evaluation of certain limits in closed form, Théorie des nombres, Proc. 1987 Québec conf., ed. J.-M. De Koninck and C. Levesque, de Gruyter, 1989, pp. 459-474; MR1024583 (90m:11127).
[34] S. R. Finch, Stieltjes constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 166-171.
[35] M. Tsfasman, Asymptotic behaviour of the Euler-Kronecker constant, Algebraic Geometry and Number Theory, ed. V. Ginzburg, Birkhäuser Boston, 2006, pp. 453-458; math.NT/0503347; MR2263196 (2007h:11129).
[36] R. K. Guy, Unsolved Problems in Number Theory, $2^{\text {nd }}$ ed., Springer-Verlag, 1994, sect. B48; MR1299330 (96e:11002).
[37] A. Walter, Dirichlet L-functions and prime products, unpublished note (2005).
[38] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000010 and A060594.
[39] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 55-62, 138-139; MR0434929 (55 \#7892).
[40] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Univ. Press, 1995, p. 257; MR1342300 (97e:11005b).
[41] S. Finch and P. Sebah, Squares and cubes modulo n, math.NT/0604465.
[42] S. R. Finch, Hafner-Sarnak-McCurley constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 110-112.
[43] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A007431 and A114643.
[44] H. Jager, Some remarks on primitive residue class characters, Nieuw Arch. Wisk. 21 (1973) 44-47; MR0323683 (48 \#2039).
[45] S. R. Finch, Unitarism and infinitarism, unpublished note (2004).
[46] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A055231, A114810 and A114811.
[47] H. Jager, On the number of Dirichlet characters with modulus not exceeding x, Nederl. Akad. Wetensch. Proc. Ser. A 76 (1973) 452-455; Indag. Math. 35 (1973) 452-455; MR0327693 (48 \#6035).
[48] I. P. Goulden, D. K. Huynh, Rishikesh and M. O. Rubinstein, Lower order terms for the moments of symplectic and orthogonal families of L-functions, J. Number Theory 133 (2013) 639-674; arXiv:1203.4647; MR2994379.
[49] M. W. Alderson and M. O. Rubinstein, Conjectures and experiments concerning the moments of $L\left(1 / 2, \chi_{d}\right)$, Experim. Math. 21 (2012) 307-328; arXiv:1110.0253; MR2988582.
[50] M. P. Young, The third moment of quadratic Dirichlet L-functions, Selecta Math. 19 (2013) 509-543; arXiv:1203.4457; MR3090236.
[51] S. R. Finch, Series involving arithmetric functions, unpublished note (2007).
[52] D. H. Bailey, J. M. Borwein, D. Broadhurst and W. Zudilin, Experimental mathematics and mathematical physics, Gems in Experimental Mathematics, Proc. 2009 AMS Special Session on Experimental Mathematics, Washington, DC, ed. T. Amdeberhan, L. A. Medina and V. H. Moll, Amer. Math. Soc., 2010, pp. 41-58; arXiv:1005.0414; MR2731060.
[53] M. W. Coffey, Evaluation of a ln tan integral arising in quantum field theory, J. Math. Phys. 49 (2008) 093508; arXiv:0801.0272; MR2455847 (2009g:11166).
[54] M. W. Coffey, Alternative evaluation of a \ln tan integral arising in quantum field theory, Math. Phys. Anal. Geom. 13 (2010) 191-204; arXiv:0810.5077; MR2654127 (2011d:33005).
[55] A. I. Badzyan, The Euler-Kronecker constant (in Russian), Mat. Zametki 87 (2010) 35-47; Engl. transl. in Math. Notes 87 (2010) 31-42; MR2730381.
[56] K. Ford, F. Luca and P. Moree, Values of the Euler φ-function not divisible by a given odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields, Math. Comp. 83 (2014) 1447-1476; arXiv:1108.3805; MR3167466.
[57] R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547.
[58] R. J. Mathar, Survey of Dirichlet series of multiplicative arithmetic functions, arXiv:1106.4038.

[^0]: ${ }^{0}$ Copyright (C) 2005 by Steven R. Finch. All rights reserved.

