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We are interested in iterates of the logistic map  : [0 1]→ [0 1] defined by

 () =   (1− )

where 0 ≤  ≤ 4 is constant. Actually, only the values  = 4 and
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will be examined (the latter has minimal polynomial 3− 22 − 4− 8). Both corre-
spond to chaotic maps for which invariant probability densities () provably exist.

An important feature of chaos is sensitivity to initial conditions. The Lyapunov

exponent for each map quantifies the exponential rate at which two initially close

points ,  separate [1]:

| ()−  ()| ≈ | 0()| · |− |
after the first iteration,

|()−  ()| ≈
Y
0≤
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after the th iteration, and hence
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For  distributed according to  , let us write

̂() =
1



X
0≤

  ̂() =
1



X
0≤

ln | 0( )|

which converge as →∞ almost surely, by ergodicity, to

E() =

1Z
0

 ()  E |ln( 0)| =
1Z
0

ln | 0()| () 

Our study will encompass not only means, but also variances and autocovariances of

arbitrary time lag. A complete solution is possible for  = 4; only partial results exist

for  = 3678. The approach we take is similar to [2].
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0.1. Ulam-von Neumann Map. When  = 4, the invariant density has a

closed-form expression [3]:
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and thus
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for all   . Also [4],

E |ln( 0( ))| = ln(2) Var |ln( 0( ))| = 2

12


Cov
¡¯̄
ln( 0( ))

¯̄

¯̄
ln( 0( ))

¯̄¢
= −

2

24

1

2−

for all   . Clearly

lim
→∞E

(̂()) =
1

2


lim
→∞

Var (̂()) = lim
→∞

1



X
0≤
0≤

Cov(  ) =
1

8

and the Central Limit Theorem holds:
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By contrast,

lim
→∞E

³
̂()

´
= ln(2)

lim
→∞

2Var
³
̂()

´
= lim

→∞

X
0≤
0≤

Cov
¡¯̄
ln( 0( ))

¯̄

¯̄
ln( 0( ))

¯̄¢
= lim

→∞
2

6

µ
1− 1

2

¶
=

2

6


Estimates ̂() of the Lyapunov exponent are anomalously precise [5]: they possess

a standard deviation that scales as 1 rather than 1
√
. In this case, evidence

points to a revised Central Limit Theorem of the form [4, 6]:
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but a rigorous proof seems to be open.
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0.2. Ruelle-Misiurewicz Map. When  = 3678, no closed-form expression

for the invariant density is known, even though its existence is certain [7, 8, 9]. A

numerical approach is necessary. Let  = 1
2
− , then under the change of variables,

 becomes

() = 2 − 

where

 =
1

4
2 − 1

2
 = 15436890126

(with minimal polynomial 3 − 22 + 2− 2). Now let [10]

 =
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arccos
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¶
;

under this second change of variables, 2 becomes
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¡
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¢
where

 =
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2
= 01477988712

The invariant density  associated with  : [0 1] → [0 1] satisfies the functional

equation [10]
(−1())
| 0(−1())| +

(1− −1())
| 0(1− −1())| = ()

where

−1() =
1

2
arccos

Ã
1−

p
1 + 42 − 4 cos()

2

!


 0() =
2 sin(2) (1− 2 cos(2))p

sin(2)2 (1− 2 cos(2)− 2 sin(2)2)


The left-hand side of this equation is a special case of the Frobenius-Perron oper-

ator (). Starting with an initial guess 0 ≡ 1, the uniform density, iterates

+1 =  converge to a limiting density . Backtracking through the two coor-

dinate transformations, we obtain the desired invariant density  . It turns out to be

supported on the intervals [ 1

 1− 1


] and [1− 1


 
4
], which are exchanged by  , with

three vertical asymptotes.

Recall that  = 1
2
− 1


 and  = (− 2) cos(). For  distributed according to

 , we compute

E() =
1

2

1Z
0

(+  ())() = 06717404535
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E |ln( 0)| = 1

2

1Z
0

(ln |2|+ ln |2()|)() = 03421726886

No one evidently has computed higher-order moments of  and ln( 0), let alone
̂() and ̂(). Does the Central Limit Theorem need revision here too?

The value 3678 is the simplest Misiurewicz point. For any  ≤ 3678, the

logistic map  admits no periodic point  of odd order  1, i.e., it has no odd cycles.

For any   3678,  has odd cycles [11, 12].

A graph of E(), as a function of , appears in [13]; the more familiar graph of

E |ln( 0)| appears in [14]. In a sense, such plotting is meaningless, because there
always exists finer detail than captured in whatever scale we choose [15].

Jakobson [16, 17] proved that the set  = { ∈ [0 4] :  has an absolutely

continuous invariant density} has positive measure. Both 4 ∈  and 3678 ∈ ,

but the status of values like 36, 37, 38 or 39 is unknown. Note: the condition

that a density be absolutely continuous is important, yet outside our scope of study.

What can be said about  for  ∈ ? This question was satisfactorily answered only

recently [18, 19].

The metric entropy of  can be proved to be equal to the Lyapunov exponent,

but the topological entropy is altogether a different characterization [20, 21, 22, 23].

For the regular continued fraction transformation RCF() = {1}, the metric
entropy is 2(6 ln(2)) while the topological entropy is infinite [24]. The limit of

E

³
̂()

´
as →∞ is 2(6 ln(2)); the limit of Var

³
̂()

´
as →∞ is equal

to 4(08621470373) and, in fact, the Central Limit Theorem holds [2].

One-dimensional maps of the interval have inspired much computation [25, 26, 27,

28, 29, 30, 31, 32, 33, 34, 35]. We mention, for example, the maps  : [0 1]→ [0 1]

defined by

() = 1− |2− 1|

for real   1. Clearly the case  = 2 gives the Ulam-von Neumann map. Each

 has an absolutely continuous invariant density with metric entropies (Lyapunov

exponents) equal to [32, 34]⎧⎪⎪⎨⎪⎪⎩
ln(2) = 06931471805 if  = 2

06908569334 if  = 3

06844935750 if  = 4

06756910613 if  = 5

As another example, consider the map 0 : [0 1]→ [0 1] defined by

0() =

½
2+

1

4
sin(2)

¾
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The absolutely continuous invariant density of 0 has entropy equal to 06837719602.

It would be good someday to see such high-precision results for the logistic map, given

values of  other than 3678 and 4.
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