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We are interested in iterates of the logistic map 7 : [0, 1] — [0, 1] defined by
T(x)=ax(l—x)

where 0 < a < 4 is constant. Actually, only the values a = 4 and
2 1/3 -1/3
a=3 ((19 +3v33)  +4(19+3v33) "+ 1) — 3.6785735104...

will be examined (the latter has minimal polynomial a® — 2a? — 4a — 8). Both corre-
spond to chaotic maps for which invariant probability densities f(z) provably exist.
An important feature of chaos is sensitivity to initial conditions. The Lyapunov
exponent for each map quantifies the exponential rate at which two initially close
points z, y separate [1]:

T(x) = T()| =~ |T"(x)] - | = y]
after the first iteration,

(@) =T ()| ~ ] |7'(@2)] - |2 —y]

0<j<n
after the n'" iteration, and hence
1 1 .
—In|T"(x) —T" ~— In|T'(T7x)| .
ST ) =T~ 5 3 (1)

For X distributed according to f, let us write

1 : . 1 .
[ = — J = — (T
() =2 ST () =+ 3 I [r(reX)
0<j<n 0<j<n
which converge as n — oo almost surely, by ergodicity, to
1

1
B(X) = / v f(@)de,  En(T'X)| = / In |T"(2)| f(x) da.
0 0
Our study will encompass not only means, but also variances and autocovariances of
arbitrary time lag. A complete solution is possible for a = 4; only partial results exist
for a = 3.678.... The approach we take is similar to [2].
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0.1. Ulam-von Neumann Map. When a = 4, the invariant density has a

closed-form expression [3]:
1

m/x(l —x)

flz) =
and thus
B(TVX) = % Var(TV X) = é Cov(TVX, TEX) = 0
for all j < k. Also [4],

E|n(T"(TVX))| = In(2),  Var|ln(T"(TVX))| = —

12’
Cov (|In(T(T7X))| , [In(T"(T*X))|) = ~==1
’ 24 25—
for all j < k. Clearly
1
I E(7,(X)) = 7.
lim nVal“ (/jl/n(X)) = lim — Z COV(TJX7 TkX> B

0<j<n,
0<k<n

and the Central Limit Theorem holds:

t
1 1 u?
lim P (2\/271 (,& (X)— —) < t> = —/ exp (——) du.
n—oco " 2 V2T 2
By contrast,
lim E (S\n(X)> — In(2),

n—oo

nlli%lo?ﬂ Var <5\n(X)> = 7}1};)10 Z Cov (|In(T"(T7X))|, |In(T"(T*X))|)

2 2
SR R T

Estimates )\, (X) of the Lyapunov exponent are anomalously precise [5]: they possess
a standard deviation that scales as 1/n rather than 1/y/n. In this case, evidence
points to a revised Central Limit Theorem of the form [4, 6]:
t
) < 2 U
lim P (n ()\n(X) - 111(2)) < t) = —2/ In (coth (E)) du
n—0o0 ™

but a rigorous proof seems to be open.
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0.2. Ruelle-Misiurewicz Map. When a = 3.678..., no closed-form expression
for the invariant density is known, even though its existence is certain [7, 8, 9]. A
numerical approach is necessary. Let y = %a— a x, then under the change of variables,

T becomes
Sy)=y*—c
where
1

1
=g’ - Za=1.54 126...
c 4a 2@ 5436890126

(with minimal polynomial ¢ — 2¢? + 2¢ — 2). Now let [10]

e ()
0 = — arccos Bk
T c—c

under this second change of variables, S? becomes

7(0) = 1 arccos (cos(2m6) + r sin(276)?)

7r
where ) .

K= % = 0.1477988712....
The invariant density ¢ associated with 7 : [0,1] — [0, 1] satisfies the functional

equation [10]
plr1(6) _
o) =)

1 (1—\/1+4H2—4/€COS<7T9)>

where

7 H0) = 5 Arccos o

™
B 2sin(270) (1 — 2k cos(270))

V/sin(276)2 (1 — 2r cos(270) — K2 sin(276)2)
The left-hand side of this equation is a special case of the Frobenius-Perron oper-
ator Prp(6). Starting with an initial guess ¢, = 1, the uniform density, iterates
©ny1 = Prp, converge to a limiting density ¢. Backtracking through the two coor-
dinate transformations, we obtain the desired invariant density f. It turns out to be
supported on the intervals [,1 — 1] and [1 — £, 4], which are exchanged by T, with
three vertical asymptotes.

Recall that « = 3 — 1y and y = (¢ — ) cos(wf). For X distributed according to
f, we compute

7'(0

E(X) =

N —

1
/ (z + T(2)) p(0)dd = 0.6717404535...,
0
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1
E In(T'X)| = /(1n|2y| +1n[25(y)|) ¢(6)df = 0.3421726886....
0

1
2
No one evidently has computed higher-order moments of X and In(7"X), let alone
1, (X) and A, (X). Does the Central Limit Theorem need revision here too?

The value 3.678... is the simplest Misiurewicz point. For any a < 3.678..., the
logistic map 7" admits no periodic point = of odd order > 1, i.e., it has no odd cycles.
For any a > 3.678..., T has odd cycles [11, 12].

A graph of E(X), as a function of a, appears in [13]; the more familiar graph of
E |In(7"X)| appears in [14]. In a sense, such plotting is meaningless, because there
always exists finer detail than captured in whatever scale we choose [15].

Jakobson [16, 17] proved that the set A = {a € [0,4] : T has an absolutely
continuous invariant density} has positive measure. Both 4 € A and 3.678... € A,
but the status of values like 3.6, 3.7, 3.8 or 3.9 is unknown. Note: the condition
that a density be absolutely continuous is important, yet outside our scope of study.
What can be said about T for a ¢ A? This question was satisfactorily answered only
recently [18, 19].

The metric entropy of T' can be proved to be equal to the Lyapunov exponent,
but the topological entropy is altogether a different characterization [20, 21, 22, 23].
For the regular continued fraction transformation Trcr(z) = {1/z}, the metric
entropy is 72/(61n(2)) while the topological entropy is infinite [24]. The limit of
E (S\n(X)) as n — oo is m2/(61n(2)); the limit of n Var <;\n(X)) as n — oo is equal
to 4(0.8621470373...) and, in fact, the Central Limit Theorem holds [2].

One-dimensional maps of the interval have inspired much computation [25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35]. We mention, for example, the maps T} : [0,1] — [0, 1]
defined by
To(x)=1—|2z—1[

for real ¢ > 1. Clearly the case ¢/ = 2 gives the Ulam-von Neumann map. Each
T, has an absolutely continuous invariant density with metric entropies (Lyapunov
exponents) equal to [32, 34]

In(2) = 0.6931471805...  if £ = 2,

0.6908569334... if ¢ =3,
0.6844935750... ifl =4,
0.6756910613... it ¢ =5.

As another example, consider the map Sy : [0, 1] — [0, 1] defined by

™

Sol(x) = {2:1: + 4i sin(27rx)} .
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The absolutely continuous invariant density of Sy has entropy equal to 0.6837719602....
It would be good someday to see such high-precision results for the logistic map, given
values of a other than 3.678... and 4.
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