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We are interested in the effects of multiplicative noise (continuing our study [1]).
Let F, denote matrix N(0,1) white noise, that is, Ey, Fs, Ej3, ... is a sequence of
independent m x m matrices and all m? entries of F,, for each n, are independent
standard normal variables. Cohen & Newman [2] proved that the recurrence

X,=F,X,_1, Xo # 0 arbitrary
gives rise to Lyapunov exponent
iln|X,| — 1 (In(2) + ¢(%2))  almost surely as n — oo

where 1(z) is the digamma function and v = —(1) is the Euler-Mascheroni constant
[3]. In particular, for m = 1,
Tp = Endn-1

has Lyapunov exponent A = —(In(2) ++)/2 and the following Central Limit Theorem

holds:
In|z,| —nA

s

T, En & Tp1
(n)=(22)(n)
has Lyapunov exponent A = (In(2) — ~)/2 and
In /72 - 42 — n A
ny\/Ty, +y, —n . N(0,1)
m/n/24

Upon constraining certain entries of E,,, relevant Lyapunov exponent calculations
become more complicated. Wright & Trefethen [4] found that A = In(1.0574735537...)

when
Tp \ 0 1 Tn—1
Tn+1 n En+1 1 T ’
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— N(0,1) asn — oo;

for m = 2,

as n — OoQ.
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A = In(1.1149200917...) when

r, y_ (0 1 Tp—1
Tn+1 n 1 En+1 T ’

and A = In(0.9949018837...) when

Tn o 0 1 Tn—1
Ty En41 En+l T, )
Upon replacing standard normal variables ¢,, by symmetric Bernoulli variables
Ple,=1)=P(e,=-1)=1/2,

the three preceding examples no longer possess distinct Lyapunov exponents. Viswanath
[5, 6] proved that the three random Fibonacci sequences each have A = v, where

v = In(1.1319882487...) = 0.1239755988...

was computed via a fractal invariance measure on the Stern-Brocot division of the real
line. A high-precision estimate of v, due to Bai [7], was based on the cycle expansion
method applied to a corresponding Ruelle dynamical zeta function [8, 9, 10]. It is
interesting to compare the “almost-sure growth rate”

1E (In|2,]) — v = In(1.1319882487...)
against the “average growth rate” [11, 12]
L (E |2,]) — In(€) = In(1.2055694304...)

where ¢ has minimal polynomial £ + ¢2 — ¢ — 2. The latter value is larger due to
outlying sequences that occur with very small probability. It is difficult to detect the
difference experimentally since [13]

L1n (Var|z,|) — In(1 + V5)

and hence ~ (1 + 1/5)" datapoints are needed to estimate E |z, | adequately.
Embree & Trefethen [14] examined the more general linear recurrence

Tpt1l = Tn + 6 En+1Tn-1

and determined that the critical threshold 5* (below which solutions decay expo-
nentially almost surely; above which solutions grow exponentially almost surely) is
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B* = 0.70258.... It also appears that the value B corresponding to maximal decay is
f = 0.36747... with Lyapunov exponent In(0.8951...).
Chassaing, Letac & Mora [15] examined a different kind of random Fibonacci

sequence:

Tp—1+ Yn—1 with probability 1/2,
< Tn > — Yn—1
Yn Tt i 1
with probability 1/2

which reduces to the study of random products of the two nonnegative matrices:

(1) = (21)

Bai [16] computed that A = In(1.4861851938...) = 0.3962125642.... Let ¢ = (1 +
v/5)/2 denote the Golden mean [17]. Another variation is the random sequence:

Tn=1 + Yn-1 with probability ¢ — 1 &~ 0.62,
( Ty, ) — Tp—1
Un Yn—1 . .
with probability 2 — ¢ ~ 0.38
Tp—1 + Yn—1 P Y 1

with associated nonnegative matrices:

11 01
( 10 > and ( 11 ) :
In this case, A turns out to be 2v/(¢ — 1), which constitutes another occurrence of

Viswanath’s constant [7].
Fix a > 0. Chassaing, Letac & Mora [15, 18] proved that

(o) = (0 ) ()

Ko(a)
a K ()
where ¢, is distributed according to Exp(«/2) and Ky, K; are modified Bessel func-

tions [19]. If a = 2, then 2\ = Ky(2)/K1(2) = 0.8143077587.... A related ratio
I,(2)/15(2) appears in [20]; see also [1].

has Lyapunov exponent

A:
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Lyons [21, 22| studied

T\ _ (1 e Tn—1
Yn N 11 + En Yn—1 ’
where ¢, = 0 with probability 1/2 and ¢, = 7 otherwise. It turns out that 7 —

A(T) is a strictly increasing function of 7 > 0. An important threshold value 7 =
0.2688513727... is the solution of the equation [16]

2A\(7) = In(2)

and is connected with the distribution of certain random continued fractions.
Ishii [23, 24] proved that

Tn . 0 1 Tp—1
Tnp1 ) \ —1 c—e, T
has Lyapunov exponent
\(2+e)2+8+4/(2—0c)2+6°
4

A(c) = arccosh

where ¢, is distributed according to Cauchy (). If instead ¢, follows a Unif(—+/30, v/30)
distribution or a N (0, ¢?) distribution, then asymptotic results of Derrida & Gardner
25, 26] apply:

1/3
lim AMe,0)  6Y°/m

— = 0.2893082598...  if ¢ =2
Jim = = or gy~ (2893082508, ife=2,

Ae.o) 1/6 ife=1,
lim 297 ) p(3/4)2 12 .
o o2 — 0.1142366452... — fe=0.
e T(1/4)2 105.0451015308... = ¢

The constants 0.2893082598... and 0.1142366452... also appear in [27, 28], respectively,
but reasons for these connections are unclear.
Fix an odd integer k£ > 3. Pincus [29, 30] and Lima & Rahibe [31] examined

?jn—l ) with probability 1 — 7,

with probability n
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and proved that

2 2k—1

A(E) = ﬁ ;(1 — ¥ In

o(3)

The identical expression emerges if we replace the definition of the latter portion by

Tn gxn—l . o1
= with probabilit
( Un ) < (1/€)yn ) P Y
for a fixed integer ¢ > 2, and compute the asymptotic difference between A(k, ¢) and
nln(¢) in the limit as ¢ — oo. A precise numerical estimate of \(3,2) = 0.1794...,

however, is evidently open [16].
Ben-Naim & Krapivsky [32] studied two variations of random Fibonacci sequences:

| xp1 + 2,9 with probability 1 —n B -
" { Tp1+Tp-3  With probability n , wo=0, mm=x3=1

B I S with probability 1 —n
= 2, with probability 7

and determined that
lim A(n) = In(p)

n—07"

for both cases. Second-order asymptotic terms differ, however:

2¢
o A =) ) (—(p ) for case 1,
T 20 + 1
" ! In for case 2
42

and a third-order term is possible for the latter.
Consider the random geometric sequence [33]

T, =21, xo=1, pe{0,1,...,n—1}

where each of the n possible indices is given equal weight. The sequence is not
necessarily increasing, but enjoys average growth n + 1 and almost-sure growth

270" = (1.4919670404...) exp (In(2) In(n)) .
Consider instead two additional random Fibonacci models [34, 35]:

Tp=Tp1+2, x0=1 ¢qe€{0,1,....,n—1};
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Tp=x,+x, xo=1, pqge{0,1,...,n—1}
Model 1 enjoys average growth

1

mn_lﬂl exp(2y/n)

and almost-sure growth
Cexp ((1.889...)y/n)

where C' > 0 is unknown. Model 2 is not necessarily increasing but enjoys average
growth n + 1; unlike the random geometric sequence, it seems not to display almost-
sure behavior of any kind.

Kenyon & Peres [36] studied random products associated with two sets of matrices:

(1) (Vo) (2)
o) (1) (oa) (65)

The three matrices in the first set are equiprobable, with Lyapunov exponent In(2)/3 =
0.2310490601.... The four matrices in the second set are likewise equiprobable, with
Lyapunov exponent [37]

1 2 N i1 (3-201\
S In <§> + ;4 In (W — 0.7974350484....

We wonder whether exp(0.7974350484...) is transcendental. Moshe [38] studied ran-
dom products associated with two equiprobable 3 x 3 matrices:

1 3 1 4 2 8
1 2 0|, —2 —-1 —4
-3 =6 0 3 1 4

and computed Lyapunov exponent
6 2. D g n (32 —2(=1)) — F2VE 4 B (-1)2"| = 0.5897925607...
j=0 k=0

Many more similar examples are found in [39, 40, 41, 42].
Up to now, the random mechanisms underlying sequences have been very simple.
Here is a more complicated but well-known example [43, 44]:

Tpyl = Aplp + Tpo1, 20=0, x1=1
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where the cofficients a,, are obtained by selecting a random 6 € [0, 1] and computing
its continued fraction digits:

For instance, if § = 7 — 3, then
{a1,a9,a3,a4} = {7,15,1,292},  {xq, x3, 24,25} = {7,106, 113, 33102};

note that x,, is simply the denominator of the n'® partial convergent to 6. Lévy [45]
proved that this recurrence gives rise to Lyapunov exponent

7.‘.2

— 1.1865691104....
121n(2)

Another example involves the recurrence [46]
Tppr =2 an + 201wy, 1o=0, x1=1
where the cofficients b,, are obtained via

270 27h2|  27s|
0 = + +

il il il

The corresponding Lyapunov exponent is

(7 (2R = 13002208708
m(4/3) \12 ' *\2))

where Lis(y) is the dilogarithm function [47]. (This constant also appears in [48]
without explanation.) Generalization to base k > 2 is possible, as well as formulation
for Khintchine-type and Lochs-type constants in this broad setting.

0.1. Addendum. The subject continues to expand [49, 50, 51, 52, 53, 54, 55].
Two earlier works deserve mention. Hope [56] examined

Tpyl = Aplp + Tpo1, To=0, x1=1
like Lévy, but with a simple rule
P(a,=1)=P(a,=2)=1/2

and independence assumed. The Lyapunov exponent is

1 1 1 1 1
lim — ) ln(a1+—’+—|+---+—’+—|> ~ 0.673 ~ In(1.96).
oo 2” a=1 or 2 |CL2 |CL3 |CLn_1 |CL7L
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Davison [57] studied the same except with the rule
a, =14 (|#n] mod?2)

for a random 6 € [0, 2], showing that

1 5
1.931 < \/2 +v/3 < liminf 2/" < limsup 2/" < ( +2f> (1 + \/é) <1.977.
We wonder how closely these examples might be connected.

The sequence of polynomials giving Pascal’s rhombus [39] arises from a second-
order recurrence

pu(r) = (1 + 2+ 2*)ppa(z) + 2%pna(z), pi(z)=14z+2* po(z) =1

Let w, to be the number of odd coefficients in p,(z). A numerical method gives
“typical growth” A = 0.57331379313.... While limsup,,_, . In(u,)/In(n) = 1 is trivial,
the following was proved only recently [58]:

1/6

liminf n(un)
n—oo In(n)

p (A3B3)

_ I(L63T6300574.)
In(2)

where A, B are known 5 X 5 integer matrices and p denotes spectral radius (the
maximal modulus of eigenvalues). Consider instead the Fibonacci polynomials [39]

Qn(x> = anfl(x) + %172(1’)7 91(@ =, %(x) =1
The number v,, of odd coefficients in g,(z) is the n'" term of Stern’s sequence [59]:

Von+1 = Un, Vap = Up + Up_1.

Again, A\ = 0.3962125642... via numerics; “typical dispersion” o2 = 0.0221729451...
can be found similarly [40]. The limit superior and limit inferior do not present any
difficulties for {v,}. An evaluation of o2 corresponding to {u,}, however, remains
open.
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