Lyapunov Exponents. IV

Steven Finch

March 18, 2008
We are interested in the effects of multiplicative noise (continuing our study [1]). Let E_{n} denote matrix $N(0,1)$ white noise, that is, $E_{1}, E_{2}, E_{3}, \ldots$ is a sequence of independent $m \times m$ matrices and all m^{2} entries of E_{n}, for each n, are independent standard normal variables. Cohen \& Newman [2] proved that the recurrence

$$
X_{n}=E_{n} X_{n-1}, \quad X_{0} \neq 0 \text { arbitrary }
$$

gives rise to Lyapunov exponent

$$
\frac{1}{n} \ln \left|X_{n}\right| \rightarrow \frac{1}{2}\left(\ln (2)+\psi\left(\frac{m}{2}\right)\right) \quad \text { almost surely as } n \rightarrow \infty
$$

where $\psi(x)$ is the digamma function and $\gamma=-\psi(1)$ is the Euler-Mascheroni constant [3]. In particular, for $m=1$,

$$
x_{n}=\varepsilon_{n} x_{n-1}
$$

has Lyapunov exponent $\lambda=-(\ln (2)+\gamma) / 2$ and the following Central Limit Theorem holds:

$$
\frac{\ln \left|x_{n}\right|-n \lambda}{\pi \sqrt{n / 8}} \rightarrow N(0,1) \quad \text { as } n \rightarrow \infty
$$

for $m=2$,

$$
\binom{x_{n}}{y_{n}}=\left(\begin{array}{ll}
\varepsilon_{n} & \varepsilon_{n}^{\prime} \\
\varepsilon_{n}^{\prime \prime} & \varepsilon_{n}^{\prime \prime \prime}
\end{array}\right)\binom{x_{n-1}}{y_{n-1}}
$$

has Lyapunov exponent $\lambda=(\ln (2)-\gamma) / 2$ and

$$
\frac{\ln \sqrt{x_{n}^{2}+y_{n}^{2}}-n \lambda}{\pi \sqrt{n / 24}} \rightarrow N(0,1) \quad \text { as } n \rightarrow \infty .
$$

Upon constraining certain entries of E_{n}, relevant Lyapunov exponent calculations become more complicated. Wright \& Trefethen [4] found that $\lambda=\ln (1.0574735537 \ldots)$ when

$$
\binom{x_{n}}{x_{n+1}}=\left(\begin{array}{cc}
0 & 1 \\
\varepsilon_{n+1} & 1
\end{array}\right)\binom{x_{n-1}}{x_{n}},
$$

[^0]$\lambda=\ln (1.1149200917 \ldots)$ when
\[

\binom{x_{n}}{x_{n+1}}=\left($$
\begin{array}{cc}
0 & 1 \\
1 & \varepsilon_{n+1}
\end{array}
$$\right)\binom{x_{n-1}}{x_{n}},
\]

and $\lambda=\ln (0.9949018837 \ldots)$ when

$$
\binom{x_{n}}{x_{n+1}}=\left(\begin{array}{cc}
0 & 1 \\
\varepsilon_{n+1}^{\prime} & \varepsilon_{n+1}
\end{array}\right)\binom{x_{n-1}}{x_{n}} .
$$

Upon replacing standard normal variables ε_{n} by symmetric Bernoulli variables

$$
\mathrm{P}\left(\varepsilon_{n}=1\right)=\mathrm{P}\left(\varepsilon_{n}=-1\right)=1 / 2,
$$

the three preceding examples no longer possess distinct Lyapunov exponents. Viswanath $[5,6]$ proved that the three random Fibonacci sequences each have $\lambda=v$, where

$$
v=\ln (1.1319882487 \ldots)=0.1239755988 \ldots
$$

was computed via a fractal invariance measure on the Stern-Brocot division of the real line. A high-precision estimate of v, due to Bai [7], was based on the cycle expansion method applied to a corresponding Ruelle dynamical zeta function [8, 9, 10]. It is interesting to compare the "almost-sure growth rate"

$$
\frac{1}{n} \mathrm{E}\left(\ln \left|x_{n}\right|\right) \rightarrow v=\ln (1.1319882487 \ldots)
$$

against the "average growth rate" $[11,12]$

$$
\frac{1}{n} \ln \left(\mathrm{E}\left|x_{n}\right|\right) \rightarrow \ln (\xi)=\ln (1.2055694304 \ldots)
$$

where ξ has minimal polynomial $\xi^{3}+\xi^{2}-\xi-2$. The latter value is larger due to outlying sequences that occur with very small probability. It is difficult to detect the difference experimentally since [13]

$$
\frac{1}{n} \ln \left(\operatorname{Var}\left|x_{n}\right|\right) \rightarrow \ln (1+\sqrt{5})
$$

and hence $\sim(1+\sqrt{5})^{n}$ datapoints are needed to estimate $\mathrm{E}\left|x_{n}\right|$ adequately.
Embree \& Trefethen [14] examined the more general linear recurrence

$$
x_{n+1}=x_{n}+\beta \varepsilon_{n+1} x_{n-1}
$$

and determined that the critical threshold β^{*} (below which solutions decay exponentially almost surely; above which solutions grow exponentially almost surely) is
$\tilde{\beta}^{*}=0.70258 \ldots$. It also appears that the value $\tilde{\beta}$ corresponding to maximal decay is $\tilde{\beta}=0.36747 \ldots$ with Lyapunov exponent $\ln (0.8951 \ldots)$.

Chassaing, Letac \& Mora [15] examined a different kind of random Fibonacci sequence:

$$
\binom{x_{n}}{y_{n}}=\left\{\begin{array}{c}
\left(\begin{array}{c}
x_{n-1}+y_{n-1} \\
y_{n-1} \\
x_{n-1} \\
x_{n-1}+y_{n-1}
\end{array}\right) \quad \text { with probability } 1 / 2 \\
\text { with probability } 1 / 2
\end{array}\right.
$$

which reduces to the study of random products of the two nonnegative matrices:

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

Bai [16] computed that $\lambda=\ln (1.4861851938 \ldots)=0.3962125642 \ldots$ Let $\varphi=(1+$ $\sqrt{5}) / 2$ denote the Golden mean [17]. Another variation is the random sequence:

$$
\binom{x_{n}}{y_{n}}=\left\{\begin{array}{c}
\left(\begin{array}{c}
x_{n-1}+y_{n-1} \\
x_{n-1} \\
y_{n-1} \\
x_{n-1}+y_{n-1}
\end{array}\right) \quad \text { with probability } \varphi-1 \approx 0.62 \\
\text { with probability } 2-\varphi \approx 0.38
\end{array}\right.
$$

with associated nonnegative matrices:

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

In this case, λ turns out to be $2 v /(\varphi-1)$, which constitutes another occurrence of Viswanath's constant [7].

Fix $\alpha>0$. Chassaing, Letac \& Mora [15, 18] proved that

$$
\binom{x_{n}}{y_{n}}=\left(\begin{array}{cc}
0 & 1 \\
1 & \varepsilon_{n}
\end{array}\right)\binom{x_{n-1}}{y_{n-1}}
$$

has Lyapunov exponent

$$
\lambda=\frac{K_{0}(\alpha)}{\alpha K_{1}(\alpha)}
$$

where ε_{n} is distributed according to $\operatorname{Exp}(\alpha / 2)$ and K_{0}, K_{1} are modified Bessel functions [19]. If $\alpha=2$, then $2 \lambda=K_{0}(2) / K_{1}(2)=0.8143077587 \ldots$... A related ratio $I_{1}(2) / I_{0}(2)$ appears in [20]; see also [1].

Lyons [21, 22] studied

$$
\binom{x_{n}}{y_{n}}=\left(\begin{array}{cc}
1 & \varepsilon_{n} \\
1 & 1+\varepsilon_{n}
\end{array}\right)\binom{x_{n-1}}{y_{n-1}}
$$

where $\varepsilon_{n}=0$ with probability $1 / 2$ and $\varepsilon_{n}=\tau$ otherwise. It turns out that $\tau \mapsto$ $\lambda(\tau)$ is a strictly increasing function of $\tau>0$. An important threshold value $\tau=$ $0.2688513727 \ldots$ is the solution of the equation [16]

$$
2 \lambda(\tau)=\ln (2)
$$

and is connected with the distribution of certain random continued fractions.
Ishii [23, 24] proved that

$$
\binom{x_{n}}{x_{n+1}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & c-\varepsilon_{n}
\end{array}\right)\binom{x_{n-1}}{x_{n}}
$$

has Lyapunov exponent

$$
\lambda(c)=\operatorname{arccosh}\left(\frac{\sqrt{(2+c)^{2}+\delta^{2}}+\sqrt{(2-c)^{2}+\delta^{2}}}{4}\right)
$$

where ε_{n} is distributed according to $\operatorname{Cauchy}(\delta)$. If instead ε_{n} follows a $\operatorname{Unif}(-\sqrt{3} \sigma, \sqrt{3} \sigma)$ distribution or a $N\left(0, \sigma^{2}\right)$ distribution, then asymptotic results of Derrida \& Gardner [25, 26] apply:

$$
\begin{gathered}
\lim _{\sigma \rightarrow 0^{+}} \frac{\lambda(c, \sigma)}{\sigma^{2 / 3}}=\frac{6^{1 / 3} \sqrt{\pi}}{2 \Gamma(1 / 6)}=0.2893082598 \ldots \\
\lim _{\sigma \rightarrow 0^{+}} \frac{\lambda(c, \sigma)}{\sigma^{2}}= \begin{cases}1 / 6 & \text { if } c=2, \\
\frac{\Gamma(3 / 4)^{2}}{\Gamma(1 / 4)^{2}}=0.1142366452 \ldots=\frac{12}{105.0451015308 \ldots} & \text { if } c=0 .\end{cases}
\end{gathered}
$$

The constants $0.2893082598 \ldots$ and $0.1142366452 \ldots$ also appear in [27, 28], respectively, but reasons for these connections are unclear.

Fix an odd integer $k \geq 3$. Pincus [29, 30] and Lima \& Rahibe [31] examined

$$
\binom{x_{n}}{y_{n}}=\left\{\begin{array}{ll}
\binom{\cos \left(\frac{\pi}{k}\right) x_{n-1}+\sin \left(\frac{\pi}{k}\right) y_{n-1}}{-\sin \left(\frac{\pi}{k}\right) x_{n-1}+\cos \left(\frac{\pi}{k}\right) y_{n-1}} & \text { with probability } 1-\eta \\
x_{n-1} \\
0
\end{array}\right) \quad \text { with probability } \eta
$$

and proved that

$$
\lambda(k)=\frac{\eta^{2}}{1-(1-\eta)^{2 k}} \sum_{j=1}^{2 k-1}(1-\eta)^{j} \ln \left|\cos \left(\frac{j \pi}{k}\right)\right| .
$$

The identical expression emerges if we replace the definition of the latter portion by

$$
\binom{x_{n}}{y_{n}}=\binom{\ell x_{n-1}}{(1 / \ell) y_{n-1}} \quad \text { with probability } \eta
$$

for a fixed integer $\ell \geq 2$, and compute the asymptotic difference between $\lambda(k, \ell)$ and $\eta \ln (\ell)$ in the limit as $\ell \rightarrow \infty$. A precise numerical estimate of $\lambda(3,2)=0.1794 \ldots$, however, is evidently open [16].

Ben-Naim \& Krapivsky [32] studied two variations of random Fibonacci sequences:

$$
\begin{gathered}
x_{n}=\left\{\begin{array}{ll}
x_{n-1}+x_{n-2} & \text { with probability } 1-\eta \\
x_{n-1}+x_{n-3} & \text { with probability } \eta
\end{array}, \quad x_{0}=0, \quad x_{1}=x_{2}=1 ;\right. \\
x_{n}=\left\{\begin{array}{ll}
x_{n-1}+x_{n-2} & \text { with probability } 1-\eta \\
2 x_{n-1} & \text { with probability } \eta
\end{array}, \quad x_{1}=x_{2}=1\right.
\end{gathered}
$$

and determined that

$$
\lim _{\eta \rightarrow 0^{+}} \lambda(\eta)=\ln (\varphi)
$$

for both cases. Second-order asymptotic terms differ, however:

$$
\lim _{\eta \rightarrow 0^{+}} \frac{\lambda(\eta)-\ln (\varphi)}{\eta}= \begin{cases}\ln \left(\frac{2 \varphi}{\varphi+2}\right) & \text { for case } 1 \\ \ln \left(\frac{2 \varphi+1}{\varphi+2}\right) & \text { for case } 2\end{cases}
$$

and a third-order term is possible for the latter.
Consider the random geometric sequence [33]

$$
x_{n}=2 x_{p}, \quad x_{0}=1, \quad p \in\{0,1, \ldots, n-1\}
$$

where each of the n possible indices is given equal weight. The sequence is not necessarily increasing, but enjoys average growth $n+1$ and almost-sure growth

$$
2^{\gamma} n^{\ln (2)}=(1.4919670404 \ldots) \exp (\ln (2) \ln (n)) .
$$

Consider instead two additional random Fibonacci models [34, 35]:

$$
x_{n}=x_{n-1}+x_{q}, \quad x_{0}=1, \quad q \in\{0,1, \ldots, n-1\} ;
$$

$$
x_{n}=x_{p}+x_{q}, \quad x_{0}=1, \quad p, q \in\{0,1, \ldots, n-1\} .
$$

Model 1 enjoys average growth

$$
\frac{1}{2 \sqrt{e \pi}} n^{-1 / 4} \exp (2 \sqrt{n})
$$

and almost-sure growth

$$
C \exp ((1.889 \ldots) \sqrt{n})
$$

where $C>0$ is unknown. Model 2 is not necessarily increasing but enjoys average growth $n+1$; unlike the random geometric sequence, it seems not to display almostsure behavior of any kind.

Kenyon \& Peres [36] studied random products associated with two sets of matrices:

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

and

$$
\left(\begin{array}{ll}
3 & 0 \\
2 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 2 \\
0 & 3
\end{array}\right) .
$$

The three matrices in the first set are equiprobable, with Lyapunov exponent $\ln (2) / 3=$ $0.2310490601 \ldots$. The four matrices in the second set are likewise equiprobable, with Lyapunov exponent [37]

$$
\frac{1}{6} \ln \left(\frac{2}{3}\right)+\sum_{i=0}^{\infty} 4^{-i-1} \ln \left(\frac{\left(3 \cdot 2^{i}\right)!}{\left(2^{i+1}\right)!}\right)=0.7974350484 \ldots
$$

We wonder whether $\exp (0.7974350484 \ldots)$ is transcendental. Moshe [38] studied random products associated with two equiprobable 3×3 matrices:

$$
\left(\begin{array}{ccc}
1 & 3 & 1 \\
1 & 2 & 0 \\
-3 & -6 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
4 & 2 & 8 \\
-2 & -1 & -4 \\
3 & 1 & 4
\end{array}\right)
$$

and computed Lyapunov exponent

$$
\frac{1}{16} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{2^{j+k}} \ln \left|3 \cdot 2^{3 j}-2(-1)^{j}-\frac{22}{9} 2^{3 j+k}+\frac{22}{9}(-1)^{j} 2^{k}\right|=0.5897925607 \ldots
$$

Many more similar examples are found in $[39,40,41,42]$.
Up to now, the random mechanisms underlying sequences have been very simple. Here is a more complicated but well-known example [43, 44]:

$$
x_{n+1}=a_{n} x_{n}+x_{n-1}, \quad x_{0}=0, \quad x_{1}=1
$$

where the cofficients a_{n} are obtained by selecting a random $\theta \in[0,1]$ and computing its continued fraction digits:

$$
\theta=\frac{1 \mid}{\mid a_{1}}+\frac{1 \mid}{\mid a_{2}}+\frac{1 \mid}{\mid a_{3}}+\cdots
$$

For instance, if $\theta=\pi-3$, then

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}=\{7,15,1,292\}, \quad\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}=\{7,106,113,33102\}
$$

note that x_{n} is simply the denominator of the $n^{\text {th }}$ partial convergent to θ. Lévy [45] proved that this recurrence gives rise to Lyapunov exponent

$$
\frac{\pi^{2}}{12 \ln (2)}=1.1865691104 \ldots
$$

Another example involves the recurrence [46]

$$
x_{n+1}=2^{b_{n}} x_{n}+2^{b_{n-1}} x_{n-1}, \quad x_{0}=0, \quad x_{1}=1
$$

where the cofficients b_{n} are obtained via

$$
\theta=\frac{2^{-b_{1}} \mid}{\mid 1}+\frac{2^{-b_{2}} \mid}{\mid 1}+\frac{2^{-b_{3}} \mid}{\mid 1}+\cdots
$$

The corresponding Lyapunov exponent is

$$
\frac{1}{\ln (4 / 3)}\left(\frac{\pi^{2}}{12}+\mathrm{Li}_{2}\left(-\frac{1}{2}\right)\right)=1.3002298798 \ldots
$$

where $\mathrm{Li}_{2}(y)$ is the dilogarithm function [47]. (This constant also appears in [48] without explanation.) Generalization to base $k \geq 2$ is possible, as well as formulation for Khintchine-type and Lochs-type constants in this broad setting.
0.1. Addendum. The subject continues to expand [49, 50, 51, 52, 53, 54, 55]. Two earlier works deserve mention. Hope [56] examined

$$
x_{n+1}=a_{n} x_{n}+x_{n-1}, \quad x_{0}=0, \quad x_{1}=1
$$

like Lévy, but with a simple rule

$$
\mathrm{P}\left(a_{n}=1\right)=\mathrm{P}\left(a_{n}=2\right)=1 / 2
$$

and independence assumed. The Lyapunov exponent is

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \sum_{a=1 \text { or } 2} \ln \left(a_{1}+\frac{1 \mid}{\mid a_{2}}+\frac{1 \mid}{\mid a_{3}}+\cdots+\frac{1 \mid}{\mid a_{n-1}}+\frac{1 \mid}{\mid a_{n}}\right) \approx 0.673 \approx \ln (1.96)
$$

Davison [57] studied the same except with the rule

$$
a_{n}=1+(\lfloor\theta n\rfloor \bmod 2)
$$

for a random $\theta \in[0,2]$, showing that

$$
1.931<\sqrt{2+\sqrt{3}} \leq \liminf _{n \rightarrow \infty} x_{n}^{1 / n} \leq \limsup _{n \rightarrow \infty} x_{n}^{1 / n} \leq \sqrt{\left(\frac{1+\sqrt{5}}{2}\right)(1+\sqrt{2})}<1.977
$$

We wonder how closely these examples might be connected.
The sequence of polynomials giving Pascal's rhombus [39] arises from a secondorder recurrence

$$
p_{n}(x)=\left(1+x+x^{2}\right) p_{n-1}(x)+x^{2} p_{n-2}(x), \quad p_{1}(x)=1+x+x^{2}, \quad p_{0}(x)=1
$$

Let u_{n} to be the number of odd coefficients in $p_{n}(x)$. A numerical method gives "typical growth" $\lambda=0.57331379313 \ldots$. While $\limsup _{n \rightarrow \infty} \ln \left(u_{n}\right) / \ln (n)=1$ is trivial, the following was proved only recently [58]:

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{\ln \left(u_{n}\right)}{\ln (n)} & =\rho\left(A^{3} B^{3}\right)^{1 / 6} \\
& =\frac{\ln (1.6376300574 \ldots)}{\ln (2)}=0.7116094872 \ldots
\end{aligned}
$$

where A, B are known 5×5 integer matrices and ρ denotes spectral radius (the maximal modulus of eigenvalues). Consider instead the Fibonacci polynomials [39]

$$
q_{n}(x)=x q_{n-1}(x)+q_{n-2}(x), \quad q_{1}(x)=x, \quad q_{0}(x)=1 .
$$

The number v_{n} of odd coefficients in $q_{n}(x)$ is the $n^{\text {th }}$ term of Stern's sequence [59]:

$$
v_{2 n+1}=v_{n}, \quad v_{2 n}=v_{n}+v_{n-1} .
$$

Again, $\lambda=0.3962125642 \ldots$ via numerics; "typical dispersion" $\sigma^{2}=0.0221729451 \ldots$ can be found similarly [40]. The limit superior and limit inferior do not present any difficulties for $\left\{v_{n}\right\}$. An evaluation of σ^{2} corresponding to $\left\{u_{n}\right\}$, however, remains open.

References

[1] S. R. Finch, Lyapunov exponents. III, unpublished note (2007).
[2] J. E. Cohen and C. M. Newman, The stability of large random matrices and their products, Annals of Probab. 12 (1984) 283-310; MR0735839 (86a:60013).
[3] S. R. Finch, Euler-Mascheroni constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 28-40.
[4] T. G. Wright and L. N. Trefethen, Computing Lyapunov constants for random recurrences with smooth coefficients, J. Comput. Appl. Math. 132 (2001) 331-340; http://people.maths.ox.ac.uk/trefethen/papers.html; MR1840632 (2002d:65010).
[5] D. Viswanath, Random Fibonacci sequences and the number 1.13198824..., Math. Comp. 69 (2000) 1131-1155; http://www.math.lsa.umich.edu/~divakar/; MR1654010 (2000j:15040).
[6] B. Hayes, The Vibonacci numbers, Amer. Scientist, v. 87 (1999) n. 4, 296-301; http://www.americanscientist.org/issues/pub/the-vibonacci-numbers.
[7] Z.-Q. Bai, On the cycle expansion for the Lyapunov exponent of a product of random matrices, J. Phys. A 40 (2007) 8315-8328; MR2371235.
[8] R. Mainieri, Zeta function for the Lyapunov exponent of a product of random matrices, Phys. Rev. Lett. 68 (1992) 1965-1968; chao-dyn/9301001.
[9] R. Mainieri, Cycle expansion for the Lyapunov exponent of a product of random matrices, Chaos 2 (1992) 91-97; MR1158540 (93e:82029).
[10] J. L. Nielsen, Lyapunov exponent for products of random matrices (1997), http://chaosbook.org/projects/index.shtml.
[11] B. Rittaud, On the average growth of random Fibonacci sequences, J. Integer Seq. 10 (2007) 07.2.4; MR2276788 (2007j:11018).
[12] É. Janvresse, B. Rittaud and T. de la Rue, How do random Fibonacci sequences grow?, Probab. Theory Related Fields 142 (2008) 619-648; math.PR/0611860; MR2438703 (2009m:37148).
[13] E. Makover and J. McGowan, An elementary proof that random Fibonacci sequences grow exponentially, J. Number Theory 121 (2006) 40-44; math.NT/0510159; MR2268754 (2008a:11087).
[14] M. Embree and L. N. Trefethen, Growth and decay of random Fibonacci sequences, Royal Soc. Lond. Proc. Ser. A 455 (1999) 24712485; http://people.maths.ox.ac.uk/trefethen/papers.html; MR1807827 (2001i:11098).
[15] P. Chassaing, G. Letac and M. Mora, Brocot sequences and random walks in SL($2, \mathbb{R}$), Probability Measures on Groups. VII, Proc. 1983 Oberwolfach conf., ed. H. Heyer, Lect. Notes in Math. 1064, Springer-Verlag, 1984, pp. 36-48; MR0772400 (86g:60012).
[16] Z.-Q. Bai, Calculations of certain Lyapunov exponents, unpublished note (2007).
[17] S. R. Finch, The Golden mean, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 5-11.
[18] D. Mannion, Products of 2×2 random matrices, Annals Appl. Probab. 3 (1993) 1189-1218; MR1241041 (94k:60021).
[19] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, 1972, pp. 374-377; MR1225604 (94b:00012).
[20] S. R. Finch, Euler-Gompertz constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 423-428.
[21] R. Lyons, Singularity of some random continued fractions, J. Theoret. Probab. 13 (2000) 535-545; http://mypage.iu.edu/~rdlyons/; MR1778585 (2002c:60138).
[22] K. Simon, B. Solomyak and M. Urbański, Invariant measures for parabolic IFS with overlaps and random continued fractions, Trans. Amer. Math. Soc. 353 (2001) 5145-5164; http://www.math.unt.edu/~ urbanski/papers.html; MR1852098 (2003c:37030a).
[23] K. Ishii, Localization of eigenstates and transport phenomena in the onedimensional disordered system, Prog. Theor. Phys. Suppl. 53 (1973) 77-138.
[24] I. M. Lifshits, S. A. Gredeskul and L. A. Pastur, Introduction to the Theory of Disordered Systems, Wiley, 1988, pp. 124-163; MR1042095 (90k:82073).
[25] B. Derrida and E. Gardner, Lyapounov exponent of the one-dimensional Anderson model: weak disorder expansions, J. Physique 45 (1984) 1283-1295; MR0763431 (85m:82098).
[26] F. M. Izrailev, S. Ruffo and L. Tessieri, Classical representation of the onedimensional Anderson model, J. Phys. A 31 (1998) 5263-5270; MR1634869 (99c:82037).
[27] S. T. Ariaratnam and W. C. Xie, Lyapunov exponent and rotation number of a two-dimensional nilpotent stochastic system, Dynam. Stability Systems 5 (1990) 1-9; MR1057870 (91h:60086).
[28] C. Sire and P. L. Krapivsky, Random Fibonacci sequences, J. Phys. A 34 (2001) 9065-9083; cond-mat/0106457; MR1876126 (2003b:60018).
[29] S. Pincus, Furstenberg-Kesten results: asymptotic analysis, Random Matrices and their Applications, Proc. 1984 Brunswick conf., ed. J. E. Cohen, H. Kesten and C. M. Newman, Amer. Math. Soc., 1986, pp. 79-86; MR0841083 (87m:60069).
[30] S. Pincus, Strong laws of large numbers for products of random matrices, Trans. Amer. Math. Soc. 287 (1985) 65-89; MR0766207 (86i:60087).
[31] R. Lima and M. Rahibe, Exact Lyapunov exponent for infinite products of random matrices, J. Phys. A 27 (1994) 3427-3437; MR1282183 (95d:82004).
[32] E. Ben-Naim and P. L. Krapivsky, Weak disorder in Fibonacci sequences, J. Phys. A 39 (2006) L301-L307; cond-mat/0603117; MR2238100 (2007c:82047).
[33] E. Ben-Naim and P. L. Krapivsky, Random geometric series, J. Phys. A 37 (2004) 5949-5957; cond-mat/0403157; MR2074617 (2005i:11098).
[34] E. Ben-Naim and P. L. Krapivsky, Growth and structure of stochastic sequences, J. Phys. A 35 (2002) L557-L563; cond-mat/0208072; MR1946873.
[35] I. Krasikov, G. J. Rodgers and C. E. Tripp, Growing random sequences. J. Phys. A 37 (2004) 2365-2370; http://people.brunel.ac.uk/ ${ }^{\text {mastgjr/sequences.htm; }}$ MR2045930 (2005k:60167).
[36] R. Kenyon and Y. Peres, Intersecting random translates of invariant Cantor sets, Invent. Math. 104 (1991) 601-629; MR1106751 (92g:28018).
[37] P. Sebah, Series evaluation via Kummer acceleration, Stirling approximation and Euler-Maclaurin summation, unpublished note (2007).
[38] Y. Moshe, Random matrix products and applications to cellular automata, J. d’Analyse Math. 99 (2006) 267-294; MR2279553.
[39] S. Finch, P. Sebah and Z.-Q. Bai, Odd entries in Pascal's trinomial triangle, arXiv:0802.2654.
[40] S. Finch, Z.-Q. Bai and P. Sebah, Typical dispersion and generalized Lyapunov exponents, arXiv:0803.2611.
[41] M. Pollicott, Maximal Lyapunov exponents for random matrix products, Invent. Math. 181 (2010) 209-226; http://homepages.warwick.ac.uk/~masdbl/lyapunov.pdf; MR2651384.
[42] V. Yu. Protasov and R. M. Jungers, Lower and upper bounds for the largest Lyapunov exponent of matrices, Linear Algebra Appl. 438 (2013) 4448-4468; MR3034543.
[43] K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers, Math. Assoc. Amer., 2002, pp. 20-31; MR1917322 (2003f:37014).
[44] S. R. Finch, Continued fraction transformation, unpublished note (2007).
[45] H.-C. Chan, The asymptotic growth rate of random Fibonacci type sequences, Fibonacci Quart. 43 (2005) 243-255; MR2171636 (2006f:11011).
[46] H.-C. Chan, The asymptotic growth rate of random Fibonacci type sequences. II, Fibonacci Quart. 44 (2006) 73-84; MR2209557 (2006m:11014).
[47] S. R. Finch, Apéry's constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 40-53.
[48] S. R. Finch, Continued fraction transformation. IV, unpublished note (2007).
[49] É. Janvresse, B. Rittaud and T. de la Rue, Growth rate for the expected value of a generalized random Fibonacci sequence, J. Phys. A 42 (2009) 085005; MR2525481 (2010e:11011).
[50] É. Janvresse, B. Rittaud and T. de la Rue, Almost-sure growth rate of generalized random Fibonacci sequences, Annales de l'Institut Henri Poincaré Probab. Stat. 46 (2010) 135-158; arXiv:0804.2400; MR2641774 (2012a:37106).
[51] E. B. Cureg and A. Mukherjea, Numerical results on some generalized random Fibonacci sequences, Comput. Math. Appl. 59 (2010) 233-246; MR2575510 (2010j:11024).
[52] Z.-Q. Bai, A transfer operator approach to random Fibonacci sequences, J. Phys. A 44 (2011) 115002; MR2773858 (2012a:37102).
[53] Y. Lan, Novel computation of the growth rate of generalized random Fibonacci sequences, J. Stat. Phys. 142 (2011) 847-861; MR2773789 (2012b:82056).
[54] C. Zhang and Y. Lan, Computation of growth rates of random sequences with multi-step memory, J. Stat. Phys. 150 (2013) 722-743; MR3024154.
[55] P. J. Forrester, Lyapunov exponents for products of complex Gaussian random matrices, J. Stat. Phys. 151 (2013) 796-808; arXiv:1206.2001; MR3055376.
[56] P. Hope, Exponential growth of random Fibonacci sequences, Fibonacci Quart. 33 (1995) 164-168; MR1329024 (96b:11115).
[57] J. L. Davison, A class of transcendental numbers with bounded partial quotients, Number Theory and Applications, Proc. 1988 Banff NATO Adv. Study Instit., ed. R. A. Mollin, Kluwer, 1989, pp. 365-371; MR1123082 (92h:11060).
[58] N. Guglielmi and V. Yu. Protasov, Exact computation of joint spectral characteristics of linear operators, Found. Comput. Math. 13 (2013) 37-97; MR3009529.
[59] S. R. Finch, Stolarsky-Harborth constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 145-151.

[^0]: ${ }^{0}$ Copyright © 2008 by Steven R. Finch. All rights reserved.

