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The first game we discuss originated in [1, 2], although we mostly follow [3] in our
exposition. The second and third games appear in [4].
Nature tosses a fair coin repeatedly and independently, yielding an infinite se-

quence N0, N1, N2, . . . of 1s and 2s. Just prior to each toss, Alice and Bob simul-
taneously declare their guess A and B for the resulting N . They win the toss if
both guessed correctly. Their goal is to maximize the probability of winning. They
are permitted to strategize no later than one hour beforehand; after the game starts,
any communication between them is only via the As, Bs and Ns. With no further
information, if they agree beforehand to always both guess 1 (for example) then the
probability of winning is 1/2. No improvement is possible.
Suppose now that, during their strategizing, Alice and Bob are told that Alice will

be given the full sequence N0, N1, N2, . . . one minute before the game! To improve
their odds, Alice must pass relevant information she knows to Bob in an agreed-upon
manner. Setting A = N always does not help their cause! At toss 0, Alice might
declare

A0 = N2

(sacrificing her knowledge of N0) so that Bob understands to declare B1 = B2 = A0.
They will win toss 2 since Alice will declare A2 = N2. At toss 1, Alice might declare

A1 = N4

(sacrificing her knowledge of N1) so that Bob understands to declare B3 = B4 = A1.
They will win toss 4 since Alice will declare A4 = N4. At toss 3, Alice might declare

A3 = N6

(sacrificing her knowledge of N3) so that Bob understands to declare B5 = B6 = A3.
They will win toss 6 since Alice will declare A6 = N6, and so forth. In summary,
Alice and Bob will score one win out of two whenever {N2t+1, N2t+2} = {1, 2} or
{2, 1}. When {N2t+1, N2t+2} = {1, 1} or {2, 2}, they will score one win out of two
half the time and two out of two the remaining half, giving odds of
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Instead of partitioning time into blocks modulo 2, let us do so modulo 3. Define
the modeMt of {N3t+1, N3t+2, N3t+3} to be the most common element in the set. At
toss 0, Alice might declare

A0 =M0

(sacrificing her knowledge of N0) so that Bob understands to declare B1 = B2 = B3 =
M0. Assume that indices 1 ≤ i, j, k ≤ 3 are distinct. Alice’s next three declarations
might be

Ai = Aj =M0 and Ak =M1 if Nk 6=M0

and
A1 = A2 =M0 and A3 =M1 if N1 = N2 = N3 =M0

(sacrificing her knowledge of N3 for the latter) so that Bob understands to declare
B4 = B5 = B6 = M1. In summary, Alice and Bob will score two wins out of
three whenever {N1, N2, N3} contains two 1s and one 2, or two 2s and one 1. When
{N1, N2, N3} contains all 1s or all 2s, they will score two wins out of three half the
time and three out of three the remaining half, giving odds of

3

4
· 2
3
+
1

4
·
2
3
+ 1

2
=
17

24
= 0.7083....

Amore sophisticated strategy allows the win probability to approach x = 0.8107103750...
as closely as desired, where x is the unique solution of the equation [1]

−x ln(x)− (1− x) ln(1− x) + (1− x) ln(3) = ln(2).

No further improvement is possible beyond this point.

0.1. Symmetric OnlineMatching Coins. The preceding game is asymmetric —
Alice knows everything and Bob knows nothing — for the following game, information
is distributed equally among the players and they will both need to send signals to
each other. Imagine here that a fair coin has four equally-likely sides, not two. (A
regular tetrahedral die would be a better metaphor.) Also define

f(N) =

½
1 if N = 1 or 3,
0 if N = 2 or 4,

g(N) =

½
1 if N = 1 or 2,
0 if N = 3 or 4

for convenience, that is, f(N) anwers the question “Is N odd?" and g(N) answers
the question “Is N ≤ 2?”
Nature tosses a fair coin repeatedly and independently, yielding an infinite se-

quence N1, N2, N3, . . . of 1s, 2s, 3s and 4s. Just prior to each toss, Alice and Bob
simultaneously declare their guess A and B for the resulting N . They win the toss if
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both guessed correctly. Their goal is to maximize the probability of winning. They
are permitted to strategize no later than one hour beforehand; after the game starts,
any communication between them is only via the As, Bs and Ns. With no further
information, if they agree beforehand to always both guess 1 (for example) then the
probability of winning is 1/4. No improvement is possible.
Suppose now that, during their strategizing, Alice and Bob are told that Alice will

be given the sequence f(N1), f(N2), f(N3), . . . and Bob will be given the sequence
g(N1), g(N2), g(N3), . . . one minute before the game! At toss 1, Alice might declare

A1 =

⎧⎪⎪⎨⎪⎪⎩
1 if f(N1) = 1 and f(N2) = 0,
2 if f(N1) = 0 and f(N2) = 1,
3 if f(N1) = 1 and f(N2) = 1,
4 if f(N1) = 0 and f(N2) = 0

and Bob might declare

B1 =

⎧⎪⎪⎨⎪⎪⎩
1 if g(N1) = 1 and g(N2) = 0,
2 if g(N1) = 0 and g(N2) = 1,
3 if g(N1) = 1 and g(N2) = 1,
4 if g(N1) = 0 and g(N2) = 0

so that they will win toss 2. The odds here are

1

2

µ
1

2
· 1
2
+ 1

¶
=
5

8
= 0.625.

Instead of devoting resources to guessing N1, let us shift emphasis entirely to
signaling ahead for N2 and N3. At toss 1, Alice might declare

A1 =

⎧⎪⎪⎨⎪⎪⎩
1 if f(N2) = 1 and f(N3) = 0,
2 if f(N2) = 0 and f(N3) = 1,
3 if f(N2) = 1 and f(N3) = 1,
4 if f(N2) = 0 and f(N3) = 0

and Bob might declare

B1 =

⎧⎪⎪⎨⎪⎪⎩
1 if g(N2) = 1 and g(N3) = 0,
2 if g(N2) = 0 and g(N3) = 1,
3 if g(N2) = 1 and g(N3) = 1,
4 if g(N2) = 0 and g(N3) = 0

(both sacrificing their partial knowledge of N1) so that they will win tosses 2 and 3.
The odds here are
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Amore sophisticated strategy allows the win probability to approach κ = 0.7337221510...
as closely as desired [4]. The formulas underlying this constant are more elaborate
than before. Define a hyperplanar region in R8:

∆(8) =

(
(x1, x2, . . . , x8) :

8X
=1

x = 1 and x ≥ 0 for all
)

and a real-valued function on ∆(8):

h(x) = − 1

ln(2)

8X
=1

x ln(x )

with the convention that 0 · ln(0) = 0. Let ϕ : [0, 3]→ R be given by

ϕ(r) = max

(
4X
=1

x2 : x ∈ ∆(8) and h(x) ≥ r

)
and let ψ : [0, 3]→ R be the minimal concave function ≥ ϕ. The desired probability
κ is ψ(1), which numerically appears to be equal to ϕ(1). No further improvement is
possible beyond this point. It also appears that the minimizing vector x can be taken
such that x1 = x2 = x3 and x5 = x6 = x7, which would simplify our presentation.

0.2. Cross Over Matching Coins. Here the game is symmetric, as for the
preceding, but Nature instead tosses a pair of distinguishable coins (two sides apiece).
Thus we have two infinite sequences Nα

0 , N
α
1 , N

α
2 , . . . and N

β
0 , N

β
1 , N

β
2 , . . . of 1s and

2s. Just prior to each toss, Alice and Bob simultaneously declare their guesses A and
B for the resulting Nα and Nβ, respectively. During their one-hour prior strategizing,
they learn that Alice will be given the sequence Nβ

0 , N
β
1 , N

β
2 , . . . and Bob will be

given the sequence Nα
0 , N

α
1 , N

α
2 , . . . at one-minute prior! Their goal is to maximize

the average of (the probability of Alice winning) and (the probability of Bob winning).
Communication between them, via the As, Bs, Nαs and Nβs, is again critical to their
success.
The optimal win probability here is λ = 0.8041565330... [4]. Define a line segment

in R2:

∆(2) =

(
(x1, x2) :

2X
=1

x = 1 and x ≥ 0 for all
)

and a real-valued function on ∆(2):

h(x) = − 1

ln(2)

2X
=1

x ln(x ).
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Let ϕ : [0, 1]→ R be given by

ϕ(r) = max

(
2X
=1

x2 : x ∈ ∆(2) and h(x) ≥ r

)
and let ψ : [0, 1]→ R be the minimal concave function ≥ ϕ. The desired probability
λ is ψ(1/2), which is (in this case) provably equal to ϕ(1/2).
A simpler presentation is hence clear: λ = y2 + (1 − y)2 where y is either of the

two reals satisfying

−2y ln(y)− 2(1− y) ln(1− y) = ln(2).

No closed-form expression for this constant (or for other constants in this essay) seems
to be available.
It is possible to generalize the symmetric online game to an arbitrary number

m of players and a single nm-sided coin. The real-valued function h on ∆(nm+1)
gives rise to a ϕ (maximum sum of mth powers, indices from 1 to nm) and a minimal
concave ψ ≥ ϕ. For m > 2 or n > 2, however, ψ(ln(n)/ ln(2)) is strictly greater
than ϕ(ln(n)/ ln(2)). This complicates the numerical calculation of a optimal win
probability in the general setting.
It is also possible to generalize the cross over matching game to a pair of n-sided

coins. The real-valued function h on ∆(n) gives rise to a ϕ (maximum sum of n
squares) and a minimal concave ψ ≥ ϕ. For n > 2, however, ψ(ln(n)/(2 ln(2)))
is strictly greater than ϕ(ln(n)/(2 ln(2))). This again complicates calculations in
general.
Related ideas appear in [5] (best strategies) and [6] (maximal convex function

≤ ϕ).
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