Moduli of Continuity

Steven Finch

December 22, 2004
0.1. Bernstein Polynomials. Bernstein's proof of the Weierstrass approximation theorem makes use of the operator

$$
B_{n} f(x)=\sum_{j=0}^{n}\binom{n}{j} x^{j}(1-x)^{n-j} f\left(\frac{j}{n}\right)
$$

given any continuous function $f:[0,1] \rightarrow \mathbb{R}$. To demonstrate that

$$
\lim _{n \rightarrow \infty} B_{n} f(x)=f(x)
$$

uniformly on $[0,1]$ requires a bound of the form

$$
\sup _{0 \leq x \leq 1}\left|B_{n} f(x)-f(x)\right| \leq c \cdot \omega\left(f, n^{-1 / 2}\right),
$$

where $\omega(f, \delta)$ is the first modulus of continuity

$$
\omega(f, \delta)=\sup _{|u-v|<\delta}|f(u)-f(v)|
$$

and $0 \leq \delta \leq 1$. What is the best possible constant c that works for all $n \geq 1$? Starting from [1, 2], Sikkema [3, 4, 5] proved that

$$
\sup _{n \geq 1} \sup _{f} \sup _{0 \leq x \leq 1} \frac{\left|B_{n} f(x)-f(x)\right|}{\omega\left(f, n^{-1 / 2}\right)}=\frac{4306+837 \sqrt{6}}{5832}=1.0898873310 \ldots
$$

and this value is attained only for $n=6$. Table 1 lists the best possible constants c_{n} that work for specified $n=1,2, \ldots, 8$.

Table 1. Best Constants c_{n} : Exact Expressions and Decimal Approximations

n	Exact	Decimal	n	Exact	Decimal
1	1	1	5	$\frac{21-7 \sqrt{5}}{5}$	$1.0695048315 \ldots$
2	$\frac{5-2 \sqrt{2}}{2}$	$1.0857864376 \ldots$	6	$\frac{430+837 \sqrt{6}}{5322}$	$1.0898873310 \ldots$
3	$\frac{27-10 \sqrt{3}}{9}$	$1.0754991027 \ldots$	7	$\frac{35442+33754 \sqrt{7}}{116649}$	$1.0603293674 \ldots$
4	$\frac{17}{16}$	1.0625	8	$\frac{3865128-1937991}{83888608}$	$1.0723266591 \ldots$

[^0]Esseen $[6,7,8,9]$ examined the limiting behavior of c_{n} as n grows without bound:

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \sup _{f} \sup _{0 \leq x \leq 1} \frac{\left|B_{n} f(x)-f(x)\right|}{\omega\left(f, n^{-1 / 2}\right)} & =2 \sum_{m=0}^{\infty}(m+1)(\Phi(2 m+2)-\Phi(2 m)) \\
& =1.0455636083 \ldots
\end{aligned}
$$

where

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t=\frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)+\frac{1}{2}
$$

Of course, we understand to omit constant functions f from the supremum (for which $\omega=0$).

Define the second modulus of continuity

$$
\tilde{\omega}(f, \delta)=\sup _{|u-v|<\delta}\left|f(u)-2 f\left(\frac{u+v}{2}\right)+f(v)\right| .
$$

In contrast with the preceding results, the best constant and best asymptotic constant here coincide:

$$
\sup _{f} \sup _{0 \leq x \leq 1} \frac{\left|B_{n} f(x)-f(x)\right|}{\tilde{\omega}\left(f, n^{-1 / 2}\right)}=1
$$

for each $n \geq 1$. This was proved only recently by Paltanea [10], building on earlier results $[11,12,13,14,15,16]$. Here, of course, we understand to omit linear functions f from the supremum (for which $\tilde{\omega}=0$).

Let us return to the first modulus ω for the remainder of this essay. Define Ω to be the set of all continuous functions $g:[0,1] \rightarrow \mathbb{R}$ that vanish at zero, are nondecreasing and subadditive (meaning $g(x+y) \leq g(x)+g(y)$ always). Each member g of Ω satisfies $g(x)=\omega(g, x)$ and thus is itself a modulus of continuity. Define Ω^{*} to be the subset of Ω whose elements g are such that $x \mapsto x^{-1} g(x)$ is nonincreasing on $(0,1]$. Then [17, 18]

$$
\sup _{n \geq 1} \sup _{0<x \leq 1} \sup _{g \in \Omega} \frac{B_{n} g(x)}{g(x)}=2>1.1855905950 \ldots=\alpha=\sup _{0<x \leq 1} \sup _{n \geq 1} \sup _{g \in \Omega^{*}} \frac{B_{n} g(x)}{g(x)}
$$

where

$$
\alpha=\sup _{k \geq 0} \sup _{k \leq x \leq k+1} 1+e^{-x}\left(\frac{x^{k}}{k!}-1\right)=1+\frac{\xi^{2}}{2} e^{-\xi}
$$

and $\xi=3.4920333011 \ldots$ is the unique real zero of the cubic equation $x^{3}-3 x^{2}-6=0$.
A seemingly related problem involves the ratio of moduli [19, 20]

$$
\rho_{1}(n)=\sup _{0<\delta \leq 1} \sup _{f} \frac{\omega\left(B_{n} f, \delta\right)}{\omega(f, \delta)}=2
$$

for each $n \geq 1$. There are interesting multivariate versions of this result. Consider the operator

$$
B_{n} f(x, y)=\sum_{i=0}^{n} \sum_{j=0}^{n}\binom{n}{i} x^{i}(1-x)^{n-i}\binom{n}{j} y^{j}(1-y)^{n-j} f\left(\frac{i}{n}, \frac{j}{n}\right)
$$

given any continuous function $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$. This is also called the bivariate tensor product Bernstein polynomial on the unit square. De La Cal, Cárcamo \& Valle [21, 22] proved that, in this two-dimensional case, the ratio

$$
\rho_{2}(n)=\sup _{0<\delta \leq 1} \sup _{f} \frac{\omega\left(B_{n} f, \delta\right)}{\omega(f, \delta)}
$$

depends on n and

$$
\begin{aligned}
\sup _{n \geq 1} \rho_{2}(n) & =1-\frac{1}{e^{2}}+\sum_{t=0}^{\infty}\left[1-\frac{1}{e^{2}}\left(\sum_{s=0}^{t} \frac{1}{s!}\right)^{2}\right] \\
& =2.3884423285 \ldots=1-e^{-2}+\beta
\end{aligned}
$$

where $\beta=1.5237776118 \ldots$ is the mean of the maximum of two independent Poisson(1) random variables. One would expect the k-dimensional case, $k \geq 3$, to be even more complicated. In fact, $\rho_{k}(n)=k$ for all $n \geq 1$. Hence only the bivariate case gives n-dependent behavior as well as a new constant, which is quite surprising.
0.2. Müntz-Jackson theorem. Müntz's theorem gives that the power functions

$$
\left\{x^{\lambda_{j}}: 0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\ldots\right\}
$$

generate a dense subspace of the space of all continuous functions on $[0,1]$ if and only if $\sum_{j=0}^{\infty} 1 / \lambda_{j}=\infty$. Jackson's theorem is in the spirit of other results in this essay: It provides bounds on the error in approximating a continuous function f by polynomials in terms of ω. Newman $[23,24]$ combined the two theorems in the following way. Define

$$
\Lambda=\left\{\lambda_{j}: 0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}\right\}
$$

and generalized polynomials

$$
Q_{\Lambda}=\left\{\sum_{j=0}^{n} a_{j} x^{\lambda_{j}}: a_{j} \in \mathbb{R} \text { for all } 0 \leq j \leq n\right\}
$$

Then

$$
\inf _{q \in Q_{\Lambda}} \sup _{0 \leq x \leq 1}|q(x)-f(x)| \leq C \cdot \omega\left(f, \varepsilon_{\Lambda}\right)
$$

where C is a constant independent of f and Λ, and

$$
\varepsilon_{\Lambda}=\sup _{\operatorname{Re}(z)=1}\left|\frac{1}{z} \frac{z-\lambda_{1}}{z+\lambda_{1}} \frac{z-\lambda_{2}}{z+\lambda_{2}} \cdots \frac{z-\lambda_{n}}{z+\lambda_{n}}\right| .
$$

Newman [23, 24] demonstrated that $1 / 50<C<368$ and Odogwu [25] improved the upper bound to 66 . Over and beyond the value of C, the Blaschke product formula for ε_{Λ} is intriguing. Special cases (when consecutive λs are at least 2 apart, or when consecutive λ s are at most 2 apart) with simpler formulas also exist.

An L_{p}-generalization of ω can be defined; the constants in this essay correspond only to the case $p=\infty$. It would be good to see their L_{p}-analogs for $p<\infty$. Clearly $\lim _{\delta \rightarrow 0} \omega(f, \delta) \cdot \delta^{-1}=0$ implies that f is constant. Consequences of the weaker condition $\lim _{\delta \rightarrow 0} \omega(f, \delta) \cdot \ln (\delta)=0$ are mentioned in [26].

References

[1] T. Popoviciu, Sur l'approximation des fonctions convexes d'ordre supérieur, Mathematica (Cluj) 10 (1935) 49-54.
[2] G. G. Lorentz, Bernstein Polynomials, $2^{\text {nd }}$ ed., Chelsea, 1986; pp. 20-21, 51; MR0864976 (88a:41006).
[3] P. C. Sikkema, Über den Grad der Approximation mit Bernstein-Polynomen, Numer. Math. 1 (1959) 221-239; MR0110178 (22 \#1060).
[4] P. C. Sikkema, Der Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen, Numer. Math. 3 (1961) 107-116; MR0123128 (23 \#A459).
[5] H. van Iperen and P. C. Sikkema, Determination of a class of best constants in the approximation by powers of generalized Bernstein operators, Nederl. Akad. Wetensch. Proc. Ser. A 71 (1968) 336-352; Indag. Math. 30 (1968) 336-352; MR0241855 (39 \#3192).
[6] C. G. Esseen, Über die asymptotisch beste Approximation stetiger Funktionen mit Hilfe von Bernstein-Polynomen, Numer. Math. 2 (1960) 206-213; MR0132948 (24 \#A2784).
[7] H. Walk, Probabilistic methods in the approximation by linear positive operators, Nederl. Akad. Wetensch. Indag. Math. 42 (1980) 445-455; MR0598003 (82c:41024).
[8] Y. I. Volkov, Multiple sequences of multidimensional linear positive operators (in Russian), Ukrain. Mat. Zh. 36 (1984) 286-291; Engl. transl. in Ukrainian Math. J. 36 (1984) 257-262; MR0749716 (86d:41028).
[9] X. Xiang, The best asymptotic constant of a class of approximation operators, J. Approx. Theory 70 (1992) 348-357; MR1178378 (93f:41037).
[10] R. Păltănea, Optimal constant in approximation by Bernstein operators, J. Comput. Anal. Appl. 5 (2003) 195-235; MR1980393 (2004b:41029).
[11] Y. A. Brudnyi, On a certain method for approximation of bounded functions given on a segment (in Russian), Studies of Contemporary Problems in the Constructive Theory of Functions, Proc. Second All-Union conf., Baku, 1962, ed. I. I. Ibragimov, Izdat. Akad. Nauk Azerbaidzan. SSR, pp. 40-45; MR0199614 (33 \#7757).
[12] J.-D. Cao, On linear approximation methods (in Chinese), Acta Sci. Natur. Univ. Fudan 9 (1964) 43-52.
[13] H. H. Gonska, Two problems on best constants in direct estimates, Second Edmonton Conference on Approximation Theory, 1982, ed. by Z. Ditzian, A. Meir, S. D. Riemenschneider and A. Sharma, Canad. Math. Soc., 1983, p. 394; MR0729317 (84k:41002).
[14] H. H. Gonska and R. K. Kovacheva, The second order modulus revisited: remarks, applications, problems, Conferenze del Seminario di Matematica dell'Universita di Bari 257 (1994) 1-32; MR1366531 (96k:41023).
[15] R. Păltănea, Best constants in estimates with second order moduli of continuity, Proc. 1995 Int. Dortmund Meeting on Approximation Theory (IDoMAT), Witten, ed. M. W. Müller, M. Felten and D. H. Mache, Wiley, 1995, pp. 251-275; MR1377075 (97h:41042).
[16] R. Păltănea, On an optimal constant in approximation by Bernstein operators, Rend. Circ. Mat. Palermo Suppl. n. 52, v. II (1998) 663-686; MR1644582 (2000a:41008).
[17] Z. Li, Bernstein polynomials and modulus of continuity, J. Approx. Theory 102 (2000) 171-174; MR1736050 (2000j:41029).
[18] J. de La Cal and J. Cárcamo, On certain best constants for Bernstein-type operators, J. Approx. Theory 113 (2001) 189-206; MR1876322 (2002i:41036).
[19] G. A. Anastassiou, C. Cottin and H. H. Gonska, Global smoothness of approximating functions, Analysis 11 (1991) 43-57; MR1113067 (92h:41047).
[20] J. A. Adell and A. Pérez-Palomares, Best constants in preservation inequalities concerning the first modulus and Lipschitz classes for Bernstein-type operators, J. Approx. Theory 93 (1998) 128-139; MR1612798 (99a:41038).
[21] J. de La Cal and A. M. Valle, Best constants for tensor products of Bernstein, Szász and Baskakov operators, Bull. Austral. Math. Soc. 62 (2000) 211-220; MR1786203 (2001j:41029).
[22] J. de La Cal, J. Cárcamo and A. M. Valle, A best constant for bivariate Bernstein and Szász-Mirakyan operators, J. Approx. Theory 123 (2003) 117-124; MR1985019 (2004f:41029).
[23] D. J. Newman, A general Müntz-Jackson theorem, Amer. J. Math. 96 (1974) 340-345; MR0352804 (50 \#5290).
[24] R. P. Feinerman and D. J. Newman, Polynomial Approximation, Williams \& Wilkins, 1974, pp. 13-15, 121-137; MR0499910 (58 \#17657).
[25] H. N. Odogwu, An improved constant for the Müntz-Jackson theorem, Publ. Inst. Math. (Beograd) 45(59) (1989) 103-108; MR1021924 (90m:41015).
[26] S. R. Finch, Lebesgue constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 250-255.

[^0]: ${ }^{0}$ Copyright (C) 2004 by Steven R. Finch. All rights reserved.

