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A map on a compact surface  without boundary is an embedding of a graph 

into  such that all components of − are simply connected [1]. These components
are thus homeomorphic to open disks and are called faces. The graph  is allowed

to have both loops and multiple parallel edges (unlike those in [2]). A map is rooted

when an edge, a direction along that edge, and a side of the edge, are distinguished.

The edge is called the root edge, and the face on the distinguished side is the root

face. Two rooted maps are equivalent if there is a homeomorphism between the

underlying surfaces that preserves all graph incidences and rootedness.

In the case when  is orientable, two rooted maps are equivalent if and only they

are related by an orientation-preserving homeomorphism that (merely) preserves all

graph incidences. Such thinking doesn’t apply, of course, when  is non-orientable.

For orientable surfaces, the genus  is 0 for the sphere, 1 for the torus, 2 for the

connected sum of two tori, and so forth. For non-orientable surfaces, the type 

is 12 for the projective plane, 1 for the Klein bottle, 32 for the connected sum of

three projective planes, and so forth.

The requirement that faces be simply connected implies that the graph  itself

must be connected [3]. Proof: if  were to possess two components, then a curve

drawn around one of the components could not be contracted to a point (because the

other component would present an obstacle), which is a contradiction. The converse

is true if the surface  is a sphere, but is false if  is a torus. Reason: consider the

figure-eight graph  consisting of one vertex and two edges (orthogonal loops that

together generate the torus). While  − is simply connected, this is not true for

any proper subgraph of .

Let () denote the number of rooted maps with  edges on an orientable surface

of genus . Let () denote the number of rooted maps with  edges on a non-

orientable surface of type . ( stands for “torus” and  stands for “projective

plane”.) It is known that 0() is the coefficient of 
 in the Maclaurin series

expansion [1, 4, 5]

4(1 + 2)

3(1 + )2
= 1 + 2+ 92 + 543 + 3784 + 29165 + 240576

+2084947 + 18764468 + 173997729 + 16529783410 + · · · 
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1() is the coefficient of 
 in the expansion [6, 7]

(−1 + )2

122(2 + )
= 2 + 203 + 3074 + 42805 + 569146

+7365687 + 93701838 + 1178225129 + 146928316610 + · · · 

12() is the coefficient of 
 in the expansion [1, 6]

−
(−1 + )(1 + )

= + 102 + 983 + 9824 + 100625 + 1050246

+11127577 + 119349108 + 1293071009 + 141285550010 + · · ·

and 1() is the coefficient of 
 in the expansion [8, 9, 10]

(1 + )

22(2 + )
= 42 + 843 + 13404 + 192805 + 2632846

+34862247 + 452470848 + 5791500129 + 733829122410 + · · ·

where  =
√
1− 12 and  = 2 + 4 − 2√3

p
(2 + ) throughout. Moreover [11],

() ∼ 
5(−1)212 () ∼ 

5(−1)212

as→∞, where  is the orientable map asymptotics constant:

0 =
2√

 1 =

1

24
 2 =

7

4320
√

 3 =

245

15925248
 4 =

37079

96074035200
√


and  is the non-orientable map asymptotics constant:

12 =

√
3

2
Γ (14) = − 2

√
6

Γ(−14)  1 =
1

2
 32 =

√
6

3Γ(14)
=

5

8
√
6Γ(94)



Since the status of  is quite different from the status of , we shall treat them

separately.

For many years, the values of  for   2 were unknown, owing to difficulties in

their formulation. Impressive progress has been made recently. Define a sequence

0 = 1  =
25(− 1)2 − 1

48
−1 − 1

2

−1X
=1

− for  ≥ 1

then provably

 = − 1

2−2Γ ((5 − 1)2)
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for all integers  ≥ 0. The formal power series () =P∞
=0 

−(5−1)2 satisfies the
Painlevé I differential equation

00() = 6()2 − 6

which makes possible the following asymptotics:

 ∼ 40 sin(5)√
2

µ
1440



¶−2
as  →∞ and

 =

r
3

5

Γ(15)Γ(45)

42
= 01048689877

We explain further: Bender, Gao & Richmond [12] discovered the preceding approxi-

mation for  but with only a rough numerical estimate 01034 for . The connection

with Painlevé I, streamlined  recursion and exact  expression are due to Garoufa-

lidis, Lê & Mariño [13]. A (somewhat different) full asymptotic series is also possible.

We give the first term only:

 ∼ − 1
2

314√


Ã
8
√
3

5

!−2+ 1
2

Γ

µ
2− 1

2

¶
as  → ∞, quoting [14]. This is reminiscent of other quadratic recurrence studies

[15, 16].

Likewise, the path to understanding  for   2 is fraught with peril. Define a

sequence

0 = −
√
3  =

1

2
√
3

Ã
−32 + 5− 6

2
−1 +

−1X
=1

−

!
for  ≥ 1

(the dependence of  on 2 from before is striking: if  is odd, let 2 = 0).

Conjecturally, we have [14]

 =
1

2−2Γ ((5− 3)2)2−1

for all integers/half-integers  ≥ 12. Evidence for this equality comes from quantum
physics. As consequences,

2 =
5

36
√

 52 =

1033

1024
√
6Γ(194)

 3 =
3149

442368
 72 =

1599895

294912
√
6Γ(294)
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The formal power series () =
P∞

=0 
−(5−1)4 satisfies the differential equation

20() = ()2 − 3()

and a full asymptotic series is again possible. We give the first term only:

 ∼ 

2

Ã
4
√
3

5

!−
Γ ()

as →∞, where the Stokes constant  is conjectured to be
√
6. See [17, 18] for a

bivariate analog of the preceding theory.
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