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Consider the differential equation [1, 2, 3|
y" () + (A — 2ucos(2z)) y(z) = 0

which admits periodic solutions of (least) period 7 and 27 for four countably infinite
sets of eigenvalues, for each value of p.

0.1. Even Solutions of Period 7. Given boundary conditions y'(0) = ¢/(7/2) =
0, the eigenvalues A = g for £ > 0 satisfy the infinite tridiagonal determinant
equation [4]
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as well as the continued fraction equation [5]
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For example, if p = 1, then [6] oy = —0.4551386041... and ay = 4.3713009827....
The corresponding eigenfunctions are written as cegg(x). Only for complex u can
the equality g = ag occur; the first such example [7, 8, 9, 10, 11] happens when
= (1.4687686137...)7, at which ap = g = 2.0886989027....

0.2. Odd Solutions of Period 7. Given boundary conditions y(0) = y(7/2) =
0, the eigenvalues A\ = 9,12 for k£ > 0 satisfy the infinite tridiagonal determinant
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equation
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as well as the continued fraction equation
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For example, if u = 1, then §y = 3.9170247729... and [, = 16.0329700814.... The
corresponding eigenfunctions are written as seggi2(x). Only for complex p can the

equality By = [ occur; the first such example [9, 10, 11, 12] happens when p =
(6.9289547587...)i, at which £y = 8, = 11.1904735991....

0.3. Even Solutions of Period 2w. Given boundary conditions y'(0) = y(7/2) =
0, the eigenvalues A = agp1 for k > 0 satisfy the infinite tridiagonal determinant
equation
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as well as the continued fraction equation
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For example, if © = 1, then a; = 1.8591080725... and a3 = 9.0783688472.... The
corresponding eigenfunctions are written as cegy1(z). Only for complex p can the
equality oy = ag occur; the first such example [9, 10, 11, 13] happens when

= 1.93139250... + (3.23763841...)i = (3.7699574940...)¢*?,

6 = arccos(0.51231148...) ~ 59.182°

at which
ap = ag = 6.17649... + (1.23174...)1.
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0.4. 0Odd Solutions of Period 27. Given boundary conditions y(0) = ¢/(7/2) =
0, the eigenvalues A = (41 for £ > 0 satisfy the infinite tridiagonal determinant
equation
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as well as the continued fraction equation
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For example, if 4 = 1, then #; = —0.1102488169... and B3 = 9.0477392598.... The
corresponding eigenfunctions are written as segx11(z). No new constants emerge in
connection with 4 = (3 because f;(u) = a1(—p) and f3(p) = as(—p); hence this
case reduces to the preceding.

0.5. Double Points. The values |u| = 1.468..., 6.928..., 3.769... are first terms of
the three sequences [10, 11]

e {a;}, where a;, = |p| and pu is the complex point closest to 0 satisfying aog(u) =
Qoper2(11)

o {by}, where by = |u| and  is the complex point closest to 0 satisfying Gox2(p) =
Bonalt)

o {ci}, where ¢, = |p| and p is the complex point closest to 0 satisfying aop1 (1) =
aoprs3(p) if k is even and fog11(p) = Boprs(p) if k is odd.

It is conjectured (among other things) that
aj ~ bk ~ Ck

asymptotically as k — oo and a; ~ (2.042)k? for large k. Conceivably 7~ /%e =
2.04177... could be an exact expression for the leading coefficient [11]: no one knows.
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0.6. Hill and Ince. Let n be a positive integer. Hill’s equation is the following
generalization [14]

y'(z) + ()\ -2 Zn: [ cos(2j x)) y(z) =0

Jj=1

of Mathieu’s equation (for which n = 1 was assumed). A special case of Hill’s equation
is Ince’s equation [4, 15]

y'(z) + esin(2z)y' () + (A — pecos(2z)) y(x) =0

after a suitable transformation (assuming here that n = 2). Let A denote the leftmost
eigenvalue of the above. We merely mention that the derivatives X'(0) and A”(0) of the
function g — A(p), for fixed ¢, play an interesting role in [16]. By contrast, af(0) =0
and af(0) = —1 for Mathieu’s equation, which are comparatively straightforward.
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