Inflating an Inelastic Membrane

Steven Finch

August 15, 2013
Starting with two circular unit disks (made of Mylar, a thin material that does not stretch nor shrink), we sew these together along their boundaries and then fill the interior with a fluid (air or helium) to capacity. What is the shape of the resulting three-dimensional solid of revolution (Mylar balloon)? [1, 2, 3]

Without loss of generality, assume that the solid is centered at the origin and its axis of revolution is the z axis. In the plane $y=0$, the boundary curve $z=z(x)$ solves the following calculus of variations problem: Maximize volume

$$
4 \pi \int_{0}^{\rho} x z(x) d x
$$

subject to the constraint

$$
\int_{0}^{\rho} \sqrt{1+z^{\prime}(x)^{2}} d x=1
$$

where $0<\rho<1$ is fixed. It turns out that the optimal value of ρ is

$$
\rho=\frac{4 \sqrt{2 \pi}}{\Gamma(1 / 4)^{2}}=\frac{\sqrt{2}}{K[1 / 2]}=0.7627597635 \ldots=(1.3110287771 \ldots)^{-1}
$$

and the parametric representation for the associated boundary surface is

$$
\begin{gathered}
x=\rho \operatorname{cn}\left(u, \frac{1}{2}\right) \cos (v), \quad y=\rho \operatorname{cn}\left(u, \frac{1}{2}\right) \sin (v), \\
z=\sqrt{2} \rho\left(E\left[\arcsin \left(\operatorname{sn}\left(u, \frac{1}{2}\right)\right), \frac{1}{2}\right]-\frac{1}{2} u\right)
\end{gathered}
$$

for $-K[1 / 2]<u<K[1 / 2], 0<v<2 \pi$. In the preceding, $K[m], \operatorname{sn}(u, m), \operatorname{cn}(u, m)$ are defined exactly as in [4] and

$$
E[\phi, m]=\int_{0}^{\sin (\phi)} \sqrt{\frac{1-m t^{2}}{1-t^{2}}} d t
$$

[^0]

Figure 1: Mylar balloon, starting from two unit disks
denotes the incomplete elliptic integral of the second kind. These are admittedly incompatible with [5] but we purposefully choose formulas here to be consistent with the computer algebra package MATHEMATICA. See Figure 1. Let $E[m]=E[\pi / 2, m]$. Clearly ρ is the equatorial radius and

$$
\begin{aligned}
\tau & =\frac{(2 \pi)^{3 / 2}}{\Gamma(1 / 4)^{2}} \rho=2 \sqrt{2}\left(E\left[\frac{1}{2}\right]-\frac{1}{2} K\left[\frac{1}{2}\right]\right) \rho=(1.1981402347 \ldots) \rho \\
& =\frac{16 \pi^{2}}{\Gamma(1 / 4)^{4}}=\frac{\pi}{K[1 / 2]^{2}}=0.9138931620 \ldots
\end{aligned}
$$

is the polar diameter (thickness). Note that $\tau /(2 \rho)=0.5990701173 \ldots$, the ratio of extreme distances through the origin.

The volume

$$
\begin{aligned}
V & =\sqrt{\frac{\pi}{2}} \frac{\Gamma(1 / 4)^{2}}{6} \rho^{3}=\frac{\sqrt{2} \pi}{3} K\left[\frac{1}{2}\right] \rho^{3}=(2.7458122499 \ldots) \rho^{3} \\
& =\frac{64 \pi^{2}}{3 \Gamma(1 / 4)^{4}}=\frac{4 \pi}{3 K[1 / 2]^{2}}=1.2185242161 \ldots
\end{aligned}
$$

is considerably less than $(\sqrt{2} / 3) \pi=1.48 \ldots$, the volume of the sphere with surface area equal to that of the two original disks. $\quad\left(4 \pi r^{2}=2 \pi\right.$, hence $r=1 / \sqrt{2}$, hence $(4 / 3) \pi r^{3}=(\sqrt{2} / 3) \pi$.) It seems reasonable to call V the Mylar balloon constant.

The surface area A possesses an elementary expression: $\pi^{2} \rho^{2}$. Comparing the original area 2π with A :

$$
\frac{2 \pi}{A}=\frac{2}{\pi \rho^{2}}=\frac{1}{\tau}=1.0942198076 \ldots
$$

reveals a remarkable fact. We seem to have lost some of the 2 D area, despite the 1 D restriction on Mylar stretching/shrinking. There must be crimping or wrinkling of the inflated balloon in order to accommodate $\approx 9.42 \%$ area of the deflated balloon. Most of the crimping occurs at the equator; none occurs at the poles. More precisely, the crimping is governed by a local distribution function [6]

$$
\delta(x)=\frac{\rho^{2}}{x} \int_{0}^{x} \frac{d t}{\sqrt{\rho^{4}-t^{4}}}=\frac{\rho}{\sqrt{2} x}\left(K\left[\frac{1}{2}\right]-F\left[\arccos \left(\frac{x}{\rho}\right), \frac{1}{2}\right]\right)
$$

over $0<x<\rho$, where $F[\phi, m]$ is defined exactly as in [4]. See Figure 2. We have $\delta(\rho)=1 / r=1.311 \ldots$ whereas $\delta(0)=1$. Implicit in all our analysis is an assumption that the wrinkles do not affect the volume of the balloon. We wonder about the realism of such, given that the wrinkles do affect the surface area significantly.

The unit square analog of the Mylar balloon gives rise to a teabag or paper bag $[7,8]$, whose optimal volume appears to be approximately $0.208[9,10]$. More work will be needed to confirm that the actual teabag constant is no larger than this value.

References

[1] W. H. Paulsen, What is the shape of a Mylar balloon? Amer. Math. Monthly 101 (1994) 953-958; MR1304319 (95i:49067).
[2] I. M. Mladenov and J. Oprea, The Mylar balloon revisited, Amer. Math. Monthly 110 (2003) 761-784; MR2024747 (2004k:33042).

Figure 2: Local distribution of the 9.42% excess area
[3] J. Oprea, The Mathematics of Soap Films: Explorations with Maple ${ }^{\circledR}$, Amer. Math. Soc., 2000, pp. 154-157, 258-260; MR1779498 (2002c:53013).
[4] S. R. Finch, Gergonne-Schwarz surface, unpublished note (2013).
[5] S. R. Finch, Random triangles, unpublished note (2010).
[6] M. Hadzhilazova and I. M. Mladenov, Once more the Mylar balloon, C. R. Acad. Bulgare Sci. 61 (2008) 847-856; MR2450943 (2009h:53007).
[7] M. A. B. Deakin, The filled inelastic membrane: a set of challenging problems in the calculus of variations, Bull. Aust. Math. Soc. 80 (2009) 506-509; MR2569925 (2010m:49060).
[8] Wikipedia contributors, Paper bag problem, Wikipedia, The Free Encyclopedia, 16 October 2012, http://en.wikipedia.org/wiki/Paper_bag_problem.
[9] A. Gammel, The teabag constant, unpublished note (2003).
[10] A. Gammel, Simulation of inflating a teabag [video file], YouTube, 2 May 2010, http://www.youtube.com/watch? $\mathrm{v}=\mathrm{Bh} 3 \mathrm{aEqgBQvQ}$.

[^0]: ${ }^{0}$ Copyright © 2013 by Steven R. Finch. All rights reserved.

