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Starting with two circular unit disks (made of Mylar, a thin material that does

not stretch nor shrink), we sew these together along their boundaries and then fill the

interior with a fluid (air or helium) to capacity. What is the shape of the resulting

three-dimensional solid of revolution (Mylar balloon)? [1, 2, 3]

Without loss of generality, assume that the solid is centered at the origin and its

axis of revolution is the  axis. In the plane  = 0, the boundary curve  = ()

solves the following calculus of variations problem: Maximize volume
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where 0    1 is fixed. It turns out that the optimal value of  is
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and the parametric representation for the associated boundary surface is
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for −[12]    [12], 0    2. In the preceding, [], sn(), cn()

are defined exactly as in [4] and
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Figure 1: Mylar balloon, starting from two unit disks

denotes the incomplete elliptic integral of the second kind. These are admittedly in-

compatible with [5] but we purposefully choose formulas here to be consistent with the

computer algebra package MATHEMATICA. See Figure 1. Let [] = [2].

Clearly  is the equatorial radius and
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is the polar diameter (thickness). Note that (2) = 05990701173, the ratio of

extreme distances through the origin.
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The volume
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is considerably less than (
√
23) = 148, the volume of the sphere with surface

area equal to that of the two original disks. (42 = 2, hence  = 1
√
2, hence

(43)3 = (
√
23).) It seems reasonable to call  theMylar balloon constant.

The surface area  possesses an elementary expression: 22. Comparing the

original area 2 with :

2


=

2

2
=
1


= 10942198076

reveals a remarkable fact. We seem to have lost some of the 2D area, despite the 1D

restriction on Mylar stretching/shrinking. There must be crimping or wrinkling of

the inflated balloon in order to accommodate ≈ 942% area of the deflated balloon.

Most of the crimping occurs at the equator; none occurs at the poles. More precisely,

the crimping is governed by a local distribution function [6]
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over 0     , where  [] is defined exactly as in [4]. See Figure 2. We have

() = 1 = 1311 whereas (0) = 1. Implicit in all our analysis is an assumption

that the wrinkles do not affect the volume of the balloon. We wonder about the

realism of such, given that the wrinkles do affect the surface area significantly.

The unit square analog of the Mylar balloon gives rise to a teabag or paper bag

[7, 8], whose optimal volume appears to be approximately 0208 [9, 10]. More work

will be needed to confirm that the actual teabag constant is no larger than this

value.
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Figure 2: Local distribution of the 942% excess area
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