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Consider a set  of  points that are independently and uniformly distributed in

the -dimensional unit cube. Let  ∈  . There exists almost-surely  ∈  such that

 6=  and | − |  | − | for all  ∈  ,  6= ,  6= . The point  is called the

nearest neighbor of  and we write  ≺ . Note that  ≺  does not imply  ≺ .

Draw an edge connecting  and  if and only if  ≺ ; the resulting graph of  vertices

and ≤  edges is called the nearest-neighbor graph  on  .

What is the probability, (), given  ∈  , that  ≺  implies  ≺ ? Such a pair

is isolated from the rest of , in the sense that the only edge touching  or  is the

edge that connects  and . We have [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
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Here is a variation of the preceding. Draw an edge connecting  and  if and

only if  ≺ ; the resulting graph of  vertices and ≤  edges is called the nearest-

neighbor anti-graph  on  . What is the probability, (), that  ∈  is isolated

from the rest of ? That is, what proportion of points in  are not nearest neighbors

of any other points? We have [16, 17, 18, 19, 20, 21]

(1) =
1

4
 (2) ≈ 028 (3) ≈ 030

but the latter two estimates are only simulation-based. To further understand (2)

will occupy us for the remainder of this essay.
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Define constants (0 ) = 1 and
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for  ≥ 1, where () is the ball in R of radius ||, centered at , and
Ω( ) =

©
(1 2     ) ∈ R  : || ≤ | − | for all 1 ≤  6=  ≤ 

ª


It is known that [19, 22, 23, 24, 25]
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and clearly (1 ) = 1, (2 1) = 12. The upper limits of summation are the kissing

numbers in R2 and R3, respectively. A proof that 24 is the kissing number in R4 was
given only recently [26, 27]. Also, (6 2) = 0 since Ω(6 2) is of measure zero.

Henze [24, 25] showed that
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and  is the regularized beta function
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(In [24], the definitions of  and  were mistakenly reversed; also, the expression

within square brackets for ( ) was unclear.) We obtain

(2 2) = 063317 = 2(0316585) (2 3) = 070888
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Tao & Wu [19] independently showed that
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(Several underlying details in [19] are clarified in [28].) Even more elaborate inte-

gral formulas apply for (3 2), (4 2), (5 2). Given the discrepancy between our

estimate of (2 2) and their estimate (see the Table), it seems doubtful that their

approximation (2) = 0284051 is entirely correct.

Table 1 Old and New Calculations of Constants

 Tao & Wu estimate of ( 2)! Current estimate of ( 2)!

2 03163335 0316585

3 00329390 0033056

4 00006575 still open

5 00000010 still open

A discrete version of the latter problem appears in [29, 30, 31, 32]. Let all the

vertices of the lattice Z be initially occupied by particles which can annihilate one-
by-one their 2 nearest neighbors. More precisely, for each unit-length edge { }
of the lattice, there is a Uniform [0 1] random variable {} representing the time
of an attack along the edge. If vertices ,  are both occupied immediately prior

to time {}, then at time {} either vertex  or vertex  (each with probability

12) becomes vacant (that is, one particle annihilates the other). If ,  are not both

occupied at time {}, then there is no change. Once a vertex becomes vacant, it re-
mains vacant permanently. The variables {}, considered over all unit-length edges
{ }, are independent. By time 1, no two surviving particles can be adjacent. When
 = 1, the probability that a given vertex remains occupied is 1 = 03678794411.

When  = 2, this probability is known to be in the interval (0227 0306) and is

approximately 025 via simulation. Greater accuracy is desired.
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