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Consider a set  of  points that are independently and uniformly distributed in

the -dimensional unit cube. Let  ∈  . There exists almost-surely  ∈  such that

 6=  and | − |  | − | for all  ∈  ,  6= ,  6= . The point  is called the

nearest neighbor of  and we write  ≺ . Note that  ≺  does not imply  ≺ .

Draw an edge connecting  and  if and only if  ≺ ; the resulting graph of  vertices

and ≤  edges is called the nearest-neighbor graph  on  .

What is the probability, (), given  ∈  , that  ≺  implies  ≺ ? Such a pair

is isolated from the rest of , in the sense that the only edge touching  or  is the

edge that connects  and . We have [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
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and, more generally [9],
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Here is a variation of the preceding. Draw an edge connecting  and  if and

only if  ≺ ; the resulting graph of  vertices and ≤  edges is called the nearest-

neighbor anti-graph  on  . What is the probability, (), that  ∈  is isolated

from the rest of ? That is, what proportion of points in  are not nearest neighbors

of any other points? We have [16, 17, 18, 19, 20, 21]

(1) =
1

4
 (2) ≈ 028 (3) ≈ 030

but the latter two estimates are only simulation-based. To further understand (2)

will occupy us for the remainder of this essay.
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Define constants (0 ) = 1 and
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for  ≥ 1, where () is the ball in R of radius ||, centered at , and
Ω( ) =
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It is known that [19, 22, 23, 24, 25]
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and clearly (1 ) = 1, (2 1) = 12. The upper limits of summation are the kissing

numbers in R2 and R3, respectively. A proof that 24 is the kissing number in R4 was
given only recently [26, 27]. Also, (6 2) = 0 since Ω(6 2) is of measure zero.

Henze [24, 25] showed that
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and  is the regularized beta function
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(In [24], the definitions of  and  were mistakenly reversed; also, the expression

within square brackets for ( ) was unclear.) We obtain

(2 2) = 063317 = 2(0316585) (2 3) = 070888
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Tao & Wu [19] independently showed that
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(Several underlying details in [19] are clarified in [28].) Even more elaborate inte-

gral formulas apply for (3 2), (4 2), (5 2). Given the discrepancy between our

estimate of (2 2) and their estimate (see the Table), it seems doubtful that their

approximation (2) = 0284051 is entirely correct.

Table 1 Old and New Calculations of Constants

 Tao & Wu estimate of ( 2)! Current estimate of ( 2)!

2 03163335 0316585

3 00329390 0033056

4 00006575 still open

5 00000010 still open

A discrete version of the latter problem appears in [29, 30, 31, 32]. Let all the

vertices of the lattice Z be initially occupied by particles which can annihilate one-
by-one their 2 nearest neighbors. More precisely, for each unit-length edge { }
of the lattice, there is a Uniform [0 1] random variable {} representing the time
of an attack along the edge. If vertices ,  are both occupied immediately prior

to time {}, then at time {} either vertex  or vertex  (each with probability

12) becomes vacant (that is, one particle annihilates the other). If ,  are not both

occupied at time {}, then there is no change. Once a vertex becomes vacant, it re-
mains vacant permanently. The variables {}, considered over all unit-length edges
{ }, are independent. By time 1, no two surviving particles can be adjacent. When
 = 1, the probability that a given vertex remains occupied is 1 = 03678794411.

When  = 2, this probability is known to be in the interval (0227 0306) and is

approximately 025 via simulation. Greater accuracy is desired.
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