Average Least Nonresidues

STEVEN FINCH

December 4, 2013

Fifty years separate two computations: the mean value of a certain function f(p) over primes p, mentioned in [1], and the mean value of f(m) over all positive integers m. We anticipate that the overlap between number theory and probability will only deepen with time.

0.1. Quadratic. Let f(m) be the smallest positive quadratic nonresidue modulo m > 2. Erdős [2] proved that

$$\lim_{x \to \infty} \left(\sum_{2$$

where $p_1 = 2, p_2 = 3, p_3 = 5, ...$ is the sequence of prime numbers. Pollack [3, 4] extended this result to

$$\lim_{x \to \infty} \left(\sum_{2 < m \le x} 1 \right)^{-1} \sum_{2 < m \le x} f(m) = \sum_{k=1}^{\infty} \frac{p_k - 1}{p_1 p_2 \cdots p_{k-1}} = 2.9200509773....$$

In words, the right-hand side is the average value of the least prime not dividing m.

0.2. Character. Given a fundamental discriminant D, let F(D) be the least positive integer n for which $(D/n) \notin \{0, 1\}$. The set of all real primitive Dirichlet characters χ , except the principal character χ_0 , is encompassed by (D/.) as D runs over all fundamental discriminants [5]. It can be shown that [3, 6]

$$\lim_{x \to \infty} \left(\sum_{|D| \le x} 1 \right)^{-1} \sum_{|D| \le x} F(D) = \sum_{q} \frac{q^2}{2(q+1)} \prod_{p < q} \frac{p+2}{2(p+1)} = 4.9809473396...$$

where p, q are primes.

What is the corresponding result for the set of all complex nonprincipal Dirichlet characters χ ? Given an integer m > 2, let

$$F'(m) = \sum_{\substack{\chi \pmod{m}, \\ \chi \neq \chi_0}} \text{(the least positive integer } n \text{ for which } \chi(n) \notin \{0, 1\}),$$

⁰Copyright © 2013 by Steven R. Finch. All rights reserved.

noting that F'(8) = F(8) + F(4) + F(-8) = 3 + 3 + 5 = 11, for example [7], and $\sum_{\chi} 1 = \varphi(m)$ where φ is the Euler totient function. Martin & Pollack [8] proved that

$$\lim_{x \to \infty} \left(\sum_{2 < m \le x} (\varphi(m) - 1) \right)^{-1} \sum_{2 < m \le x} F'(m) = \sum_{k=1}^{\infty} \frac{p_k^2}{(p_1 + 1)(p_2 + 1)\cdots(p_k + 1)} = 2.5350541804....$$

What is the corresponding result for the set of all complex primitive Dirichlet characters χ ? Given an integer m > 2, let

$$F''(m) = \sum_{\substack{\chi \pmod{m}, \\ \chi \text{ primitive}}} (\text{the least positive integer } n \text{ for which } \chi(n) \notin \{0, 1\}),$$

noting that F''(8) = F(8) + F(-8) = 8 and $\sum_{\chi} 1 = \psi(m)$ where ψ is given by [5]

$$\psi(m) = \sum_{d|m} \varphi(d) \mu(m/d)$$

and μ is the Möbius mu function. We may use the fact that χ is primitive iff the Gauss sum [9]

$$\sum_{k=1}^{m} \chi(k) \exp\left(\frac{2\pi i k n}{m}\right) = 0 \quad \text{whenever } \gcd(n,m) > 1.$$

It can be shown that [8]

$$\lim_{x \to \infty} \left(\sum_{2 < m \le x} \psi(m) \right)^{-1} \sum_{2 < m \le x} F''(m) = \sum_{q} \frac{q^4}{(q+1)^2(q-1)} \prod_{p < q} \frac{p^2 - p - 1}{(p+1)^2(p-1)} = 2.1514351057....$$

0.3. Variations. Let G(m) denote the least q such that the primes $\leq q$ generate \mathbb{Z}_m^* , the multiplicative group modulo m. Also let G'(m) denote the unique index k satisfying $p_k = q$. The latter function was first examined experimentally in [11]. For prime arguments, assuming that the Generalized Riemann Hypothesis is true, it follows that [3, 10]

$$\lim_{x \to \infty} \left(\sum_{2
$$\lim_{x \to \infty} \left(\sum_{2$$$$

but the infinite series expressions for these constants are too elaborate to present here. For arbitrary integer arguments, Bach [12, 13] proved that

$$\left(\sum_{2 < m \le x} 1\right)^{-1} \sum_{2 < m \le x} G(m) \ge (1 + o(1)) \ln \ln x \ln \ln \ln x$$

as $x \to \infty$ and conjectured that the reverse inequality is valid too. The connection between G(m) and least character nonresidues is [14]

$$G(m) = \max_{\substack{\chi \pmod{m}, \\ \chi \neq \chi_0}} \text{ (the least positive integer } n \text{ for which } \chi(n) \notin \{0, 1\} \text{)}.$$

Previously we examined a sum F'(m); here we examine a maximum.

Another interesting connection is that f(p) is the least positive integer n for which $(n/p) \notin \{0,1\}$.

Let h(m) be the least prime p for which $(m/p) \notin \{0, 1\}$. Let h'(m) be the least prime q for which $(m/q) \neq 1$. Since $p \geq q$, it is not surprising that [15]

$$C = \lim_{x \to \infty} \frac{1}{x} \sum_{m \le x} h(m) = \sum_{j=1}^{\infty} \frac{p_j - 1}{2^j} \prod_{i=1}^{j-1} \left(1 + \frac{1}{p_i} \right) = 5.6043245854...$$

is greater than

$$\lim_{x \to \infty} \frac{1}{x} \sum_{m \le x} h'(m) = \sum_{j=1}^{\infty} \frac{p_j + 1}{2^j} \prod_{i=1}^{j-1} \left(1 - \frac{1}{p_i} \right) = 2.5738775742...$$

The first (larger) average was examined by Elliott [16], but the second expression in p_i , p_j mistakenly appeared as the outcome.

Let k(m) be the least prime p such that m is a quadratic nonresidue modulo p. It is easy to see that k(m) = h(m) except when h(m) = 2, in which case k(m) > h(m). We have finally

$$\lim_{x \to \infty} \frac{1}{x} \sum_{m \le x} k(m) = \sum_{j=2}^{\infty} \frac{p_j - 1}{2^{j-1}} \prod_{i=2}^{j-1} \left(1 + \frac{1}{p_i} \right) = \frac{4}{3} \left(C - \frac{1}{2} \right) = 6.8057661139...$$

and wonder whether mean square analogs of these results are within reach.

0.4. Acknowledgements. I thank Eric Bach for his extensive computations involving G(p) and Greg Martin for theoretical help regarding h(m), h'(m) and k(m).

References

- S. R. Finch, Meissel-Mertens constants: Quadratic residues, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 96–98.
- [2] P. Erdős, Remarks on number theory. I (in Hungarian), Mat. Lapok 12 (1961) 10–17; MR0144869 (26 #2410).
- [3] P. Pollack, The average least quadratic nonresidue modulo m and other variations on a theme of Erdős, J. Number Theory 132 (2012) 1185–1202; MR2899801.
- [4] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A020649 and A053760.
- [5] S. R. Finch, Quadratic Dirichlet L-series, unpublished note (2005).
- [6] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A232929, A232930, A232931 and A232932.
- [7] R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547.
- [8] G. Martin and P. Pollack, The average least character non-residue and further variations on a theme of Erdős, J. London Math. Soc. 87 (2013) 22–42; MR3022705.
- [9] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 138–139, 165–172; MR0434929 (55 #7892).
- [10] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A232927 and A232928.
- H. Brown and H. Zassenhaus, Some empirical observations on primitive roots, J. Number Theory 3 (1971) 306–309; MR0288072 (44 #5270).
- [12] E. Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55 (1990) 355–380; MR1023756 (91m:11096).
- [13] E. Bach and L. Huelsbergen, Statistical evidence for small generating sets, Math. Comp. 61 (1993) 69–82; MR1195432 (93k:11089).
- [14] R, J. Burthe, Upper bounds for least witnesses and generating sets, Acta Arith.
 80 (1997) 311–326; MR1450926 (98h:11117).
- [15] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A092419 and A144294.

[16] P. D. T. A. Elliott, On the mean value of f(p), Proc. London Math. Soc. 21 (1970) 28–96; MR0266881 (42 #1783).