# Average Least Nonresidues 

## Steven Finch

December 4, 2013
Fifty years separate two computations: the mean value of a certain function $f(p)$ over primes $p$, mentioned in [1], and the mean value of $f(m)$ over all positive integers $m$. We anticipate that the overlap between number theory and probability will only deepen with time.
0.1. Quadratic. Let $f(m)$ be the smallest positive quadratic nonresidue modulo $m>2$. Erdős [2] proved that

$$
\lim _{x \rightarrow \infty}\left(\sum_{2<p \leq x} 1\right)^{-1} \sum_{2<p \leq x} f(p)=\sum_{k=1}^{\infty} \frac{p_{k}}{2^{k}}=3.6746439660 \ldots
$$

where $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$ is the sequence of prime numbers. Pollack $[3,4]$ extended this result to

$$
\lim _{x \rightarrow \infty}\left(\sum_{2<m \leq x} 1\right)^{-1} \sum_{2<m \leq x} f(m)=\sum_{k=1}^{\infty} \frac{p_{k}-1}{p_{1} p_{2} \cdots p_{k-1}}=2.9200509773 \ldots
$$

In words, the right-hand side is the average value of the least prime not dividing $m$.
0.2. Character. Given a fundamental discriminant $D$, let $F(D)$ be the least positive integer $n$ for which $(D / n) \notin\{0,1\}$. The set of all real primitive Dirichlet characters $\chi$, except the principal character $\chi_{0}$, is encompassed by $(D /$.$) as D$ runs over all fundamental discriminants [5]. It can be shown that $[3,6]$

$$
\lim _{x \rightarrow \infty}\left(\sum_{|D| \leq x} 1\right)^{-1} \sum_{|D| \leq x} F(D)=\sum_{q} \frac{q^{2}}{2(q+1)} \prod_{p<q} \frac{p+2}{2(p+1)}=4.9809473396 \ldots
$$

where $p, q$ are primes.
What is the corresponding result for the set of all complex nonprincipal Dirichlet characters $\chi$ ? Given an integer $m>2$, let

$$
F^{\prime}(m)=\sum_{\substack{\chi(\bmod m), \chi \neq \chi_{0}}}(\text { the least positive integer } n \text { for which } \chi(n) \notin\{0,1\}),
$$

[^0]noting that $F^{\prime}(8)=F(8)+F(4)+F(-8)=3+3+5=11$, for example [7], and $\sum_{\chi} 1=\varphi(m)$ where $\varphi$ is the Euler totient function. Martin \& Pollack [8] proved that
$\lim _{x \rightarrow \infty}\left(\sum_{2<m \leq x}(\varphi(m)-1)\right)^{-1} \sum_{2<m \leq x} F^{\prime}(m)=\sum_{k=1}^{\infty} \frac{p_{k}^{2}}{\left(p_{1}+1\right)\left(p_{2}+1\right) \cdots\left(p_{k}+1\right)}=2.5350541804 \ldots$.
What is the corresponding result for the set of all complex primitive Dirichlet characters $\chi$ ? Given an integer $m>2$, let
$$
F^{\prime \prime}(m)=\sum_{\substack{\chi(\bmod m), \chi \text { primitive }}}(\text { the least positive integer } n \text { for which } \chi(n) \notin\{0,1\})
$$
noting that $F^{\prime \prime}(8)=F(8)+F(-8)=8$ and $\sum_{\chi} 1=\psi(m)$ where $\psi$ is given by [5]
$$
\psi(m)=\sum_{d \mid m} \varphi(d) \mu(m / d)
$$
and $\mu$ is the Möbius mu function. We may use the fact that $\chi$ is primitive iff the Gauss sum [9]
$$
\sum_{k=1}^{m} \chi(k) \exp \left(\frac{2 \pi i k n}{m}\right)=0 \quad \text { whenever } \operatorname{gcd}(n, m)>1
$$

It can be shown that [8]
$\lim _{x \rightarrow \infty}\left(\sum_{2<m \leq x} \psi(m)\right)^{-1} \sum_{2<m \leq x} F^{\prime \prime}(m)=\sum_{q} \frac{q^{4}}{(q+1)^{2}(q-1)} \prod_{p<q} \frac{p^{2}-p-1}{(p+1)^{2}(p-1)}=2.1514351057 \ldots$.
0.3. Variations. Let $G(m)$ denote the least $q$ such that the primes $\leq q$ generate $\mathbb{Z}_{m}^{*}$, the multiplicative group modulo $m$. Also let $G^{\prime}(m)$ denote the unique index $k$ satisfying $p_{k}=q$. The latter function was first examined experimentally in [11]. For prime arguments, assuming that the Generalized Riemann Hypothesis is true, it follows that $[3,10]$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\sum_{2<p \leq x} 1\right)^{-1} \sum_{2<p \leq x} G(p)=3.9748384704 \ldots \\
& \lim _{x \rightarrow \infty}\left(\sum_{2<p \leq x} 1\right)^{-1} \sum_{2<p \leq x} G^{\prime}(p)=2.2060828940 \ldots
\end{aligned}
$$

but the infinite series expressions for these constants are too elaborate to present here. For arbitrary integer arguments, Bach [12, 13] proved that

$$
\left(\sum_{2<m \leq x} 1\right)^{-1} \sum_{2<m \leq x} G(m) \geq(1+o(1)) \ln \ln x \ln \ln \ln x
$$

as $x \rightarrow \infty$ and conjectured that the reverse inequality is valid too. The connection between $G(m)$ and least character nonresidues is [14]

$$
G(m)=\max _{\substack{\chi(\bmod m), \chi \neq \chi_{0}}}(\text { the least positive integer } n \text { for which } \chi(n) \notin\{0,1\}) .
$$

Previously we examined a sum $F^{\prime}(m)$; here we examine a maximum.
Another interesting connection is that $f(p)$ is the least positive integer $n$ for which $(n / p) \notin\{0,1\}$.

Let $h(m)$ be the least prime $p$ for which $(m / p) \notin\{0,1\}$. Let $h^{\prime}(m)$ be the least prime $q$ for which $(m / q) \neq 1$. Since $p \geq q$, it is not surprising that [15]

$$
C=\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{m \leq x} h(m)=\sum_{j=1}^{\infty} \frac{p_{j}-1}{2^{j}} \prod_{i=1}^{j-1}\left(1+\frac{1}{p_{i}}\right)=5.6043245854 \ldots
$$

is greater than

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{m \leq x} h^{\prime}(m)=\sum_{j=1}^{\infty} \frac{p_{j}+1}{2^{j}} \prod_{i=1}^{j-1}\left(1-\frac{1}{p_{i}}\right)=2.5738775742 \ldots
$$

The first (larger) average was examined by Elliott [16], but the second expression in $p_{i}, p_{j}$ mistakenly appeared as the outcome.

Let $k(m)$ be the least prime $p$ such that $m$ is a quadratic nonresidue modulo $p$. It is easy to see that $k(m)=h(m)$ except when $h(m)=2$, in which case $k(m)>h(m)$. We have finally

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{m \leq x} k(m)=\sum_{j=2}^{\infty} \frac{p_{j}-1}{2^{j-1}} \prod_{i=2}^{j-1}\left(1+\frac{1}{p_{i}}\right)=\frac{4}{3}\left(C-\frac{1}{2}\right)=6.8057661139 \ldots
$$

and wonder whether mean square analogs of these results are within reach.
0.4. Acknowledgements. I thank Eric Bach for his extensive computations involving $G(p)$ and Greg Martin for theoretical help regarding $h(m), h^{\prime}(m)$ and $k(m)$.

## References

[1] S. R. Finch, Meissel-Mertens constants: Quadratic residues, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 96-98.
[2] P. Erdős, Remarks on number theory. I (in Hungarian), Mat. Lapok 12 (1961) 10-17; MR0144869 (26 \#2410).
[3] P. Pollack, The average least quadratic nonresidue modulo $m$ and other variations on a theme of Erdős, J. Number Theory 132 (2012) 1185-1202; MR2899801.
[4] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A020649 and A053760.
[5] S. R. Finch, Quadratic Dirichlet L-series, unpublished note (2005).
[6] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A232929, A232930, A232931 and A232932.
[7] R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547.
[8] G. Martin and P. Pollack, The average least character non-residue and further variations on a theme of Erdős, J. London Math. Soc. 87 (2013) 22-42; MR3022705.
[9] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 138-139, 165-172; MR0434929 (55 \#7892).
[10] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A232927 and A232928.
[11] H. Brown and H. Zassenhaus, Some empirical observations on primitive roots, J. Number Theory 3 (1971) 306-309; MR0288072 (44 \#5270).
[12] E. Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55 (1990) 355-380; MR1023756 (91m:11096).
[13] E. Bach and L. Huelsbergen, Statistical evidence for small generating sets, Math. Comp. 61 (1993) 69-82; MR1195432 (93k:11089).
[14] R, J. Burthe, Upper bounds for least witnesses and generating sets, Acta Arith. 80 (1997) 311-326; MR1450926 (98h:11117).
[15] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A092419 and A144294.
[16] P. D. T. A. Elliott, On the mean value of $f(p)$, Proc. London Math. Soc. 21 (1970) 28-96; MR0266881 (42 \#1783).


[^0]:    ${ }^{0}$ Copyright © 2013 by Steven R. Finch. All rights reserved.

