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Fifty years separate two computations: the mean value of a certain function ()

over primes , mentioned in [1], and the mean value of () over all positive integers

. We anticipate that the overlap between number theory and probability will only

deepen with time.

0.1. Quadratic. Let () be the smallest positive quadratic nonresidue modulo

  2. Erdős [2] proved that

lim
→∞

Ã X
2≤

1

!−1 X
2≤

() =

∞X
=1



2
= 36746439660

where 1 = 2, 2 = 3, 3 = 5, . . . is the sequence of prime numbers. Pollack [3, 4]

extended this result to

lim
→∞

Ã X
2≤

1

!−1 X
2≤

() =

∞X
=1

 − 1
12 · · · −1 = 29200509773

In words, the right-hand side is the average value of the least prime not dividing .

0.2. Character. Given a fundamental discriminant , let  () be the least pos-

itive integer  for which () ∈ {0 1}. The set of all real primitive Dirichlet char-
acters , except the principal character 0, is encompassed by () as  runs over

all fundamental discriminants [5]. It can be shown that [3, 6]

lim
→∞

⎛⎝X
||≤

1

⎞⎠−1 X
||≤

 () =
X


2

2( + 1)

Y


+ 2

2(+ 1)
= 49809473396

where ,  are primes.

What is the corresponding result for the set of all complex nonprincipal Dirichlet

characters ? Given an integer   2, let

 0() =
X

 (mod)
6=0

(the least positive integer  for which () ∈ {0 1}) 

0Copyright c° 2013 by Steven R. Finch. All rights reserved.

1



Average Least Nonresidues 2

noting that  0(8) =  (8) +  (4) +  (−8) = 3 + 3 + 5 = 11, for example [7], andP
 1 = () where  is the Euler totient function. Martin & Pollack [8] proved that

lim
→∞

Ã X
2≤

(()− 1)
!−1 X

2≤
 0() =

∞X
=1

2
(1 + 1)(2 + 1) · · · ( + 1) = 25350541804

What is the corresponding result for the set of all complex primitive Dirichlet

characters ? Given an integer   2, let

 00() =
X

 (mod)
 primitive

(the least positive integer  for which () ∈ {0 1}) 

noting that  00(8) =  (8) +  (−8) = 8 andP 1 = () where  is given by [5]

() =
X
|

()()

and  is the Möbius mu function. We may use the fact that  is primitive iff the

Gauss sum [9]

X
=1

() exp

µ
2



¶
= 0 whenever gcd()  1.

It can be shown that [8]

lim
→∞

Ã X
2≤

()

!−1 X
2≤

 00() =
X


4

( + 1)2( − 1)
Y


2 − − 1
(+ 1)2(− 1) = 21514351057

0.3. Variations. Let () denote the least  such that the primes ≤  generate

Z∗, the multiplicative group modulo . Also let 0() denote the unique index
 satisfying  = . The latter function was first examined experimentally in [11].

For prime arguments, assuming that the Generalized Riemann Hypothesis is true, it

follows that [3, 10]

lim
→∞

Ã X
2≤

1

!−1 X
2≤

() = 39748384704

lim
→∞

Ã X
2≤

1

!−1 X
2≤

0() = 22060828940
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but the infinite series expressions for these constants are too elaborate to present

here. For arbitrary integer arguments, Bach [12, 13] proved thatÃ X
2≤

1

!−1 X
2≤

() ≥ (1 + (1)) ln ln ln ln ln

as →∞ and conjectured that the reverse inequality is valid too. The connection

between () and least character nonresidues is [14]

() = max
 (mod)

6=0

(the least positive integer  for which () ∈ {0 1}) 

Previously we examined a sum  0(); here we examine a maximum.
Another interesting connection is that () is the least positive integer  for which

() ∈ {0 1}.
Let () be the least prime  for which () ∈ {0 1}. Let 0() be the least

prime  for which () 6= 1. Since  ≥ , it is not surprising that [15]

 = lim
→∞

1



X
≤

() =

∞X
=1

 − 1
2

−1Y
=1

µ
1 +

1



¶
= 56043245854

is greater than

lim
→∞

1



X
≤

0() =
∞X
=1

 + 1

2

−1Y
=1

µ
1− 1



¶
= 25738775742

The first (larger) average was examined by Elliott [16], but the second expression in

,  mistakenly appeared as the outcome.

Let () be the least prime  such that  is a quadratic nonresidue modulo . It

is easy to see that () = () except when () = 2, in which case ()  ().

We have finally

lim
→∞

1



X
≤

() =

∞X
=2

 − 1
2−1

−1Y
=2

µ
1 +

1



¶
=
4

3

µ
 − 1

2

¶
= 68057661139

and wonder whether mean square analogs of these results are within reach.

0.4. Acknowledgements. I thank Eric Bach for his extensive computations in-

volving () and Greg Martin for theoretical help regarding (), 0() and ().
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