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A graph of order  consists of a set of  vertices (points) together with a set of

edges (unordered pairs of distinct points). Note that loops and multiple parallel edges

are automatically disallowed. Two vertices joined by an edge are called adjacent.

Two graphs  and  are isomorphic if there is a one-to-one map from the vertices

of  to the vertices of  that preserves adjacency (see Figure 1). Diagrams for all

non-isomorphic graphs of order ≤ 7 appear in [1].
A graph is connected if, for any two distinct vertices  and , there is a sequence

of adjacent vertices 0, 1, ...,  such that 0 =  and  =  (see Figure 2). The

generating function for graphs [2]

() =

∞X
=1




= + 22 + 43 + 114 + 345 + 1566 + 10447 + 123468 + 2746689 +    

and the generating function for connected graphs

() =

∞X
=1




= + 2 + 23 + 64 + 215 + 1126 + 8537 + 111178 + 2610809 +   

are related via the Euler transform [3]

1 + () = exp

Ã ∞X
=1

()



!


If we agree that 0 = 1, then the coefficients satisfy

 =
1



X
=1

⎛⎝X
|

 

⎞⎠ −  ≥ 1
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Figure 1: There exist 4 non-isomorphic graphs of order 3, that is, 3 = 4.

Figure 2: There exist 6 non-isomorphic connected graphs of order 4, that is, 4 = 6.

Asymptotically,  ∼ 2(−1)2! as →∞, or more precisely [4, 5, 6],

 ∼ 2
(−1)2

!

µ
1 + 2

(− 1)
2

+
8

3

(− 1)(− 2)(3− 7)
22

+

µ
5

252

¶¶


A separating set or vertex cut of a graph  is a subset of the vertices of

, the removal of which disconnects . Let  be a nonnegative integer. A graph

is -connected if every vertex cut has at least  vertices. Clearly any graph is 0-

connected and 1-connectedness is equivalent to connectedness. A 2-connected graph

is often called biconnected or nonseparable and a 3-connected graph is often called

triconnected. Observe that, when we count graphs, we do so abstractly; we are not

counting embeddings in the plane or on the sphere (Figures 3 and 4).

If we label the vertices of a graph distinctly with the integers 1 2  , the

corresponding enumeration problems often simplify; for example, there are exactly

2(−1)2 labeled graphs. The generating function for labeled graphs

() =

∞X
=1



!
 =

∞X
=1

2(−1)2

!


and the generating function for connected labeled graphs [7]

() =

∞X
=1



!


= +
1

2!
2 +

4

3!
3 +

38

4!
4 +

728

5!
5 +

26704

6!
6 +

1866256

7!
7 +   
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Figure 3: The left-hand pair of 1-connected graphs are isomorphic yet are distinct

planar embeddings. The right-hand pair of 1-connected graphs are isomorphic yet

are distinct spherical embeddings.

Figure 4: The left-hand pair of 2-connected graphs are isomorphic yet are distinct

planar embeddings. The right-hand pair of 2-connected graphs are isomorphic yet

are distinct spherical embeddings.

satisfy [3, 8]

1 +() = exp (())   =
1



X
=1

µ




¶
−

where again we agree that 0 = 1. In fact,  ∼  as →∞; consequently, almost
all graphs are connected [6]. Likewise, almost all graphs are 2-connected.

A graph is planar if it can be embedded in the plane (as opposed to a map,

which is a graph together with its embedding). In other words, a planar graph can

be drawn so that no two edges meet except at a vertex at which both are incident.

The first example of a nonplanar graph is the complete graph 5 with 5 vertices and

all 10 edges; a second well-known example is the complete bipartite graph 33 with

6 vertices (three houses and three utilities) and 9 edges (each house is adjacent to
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each utility). The generating function for planar graphs [9]

̄() =

∞X
=1

̄


= + 22 + 43 + 114 + 335 + 1426 + 8227 + 69668 + 798539 +    

the generating function for connected planar graphs

̄() =

∞X
=1

̄


= + 2 + 23 + 64 + 205 + 996 + 6467 + 59748 + 718859 +    

the generating function for 2-connected planar graphs (see Figure 5)

̄() =

∞X
=1

̄


= 3 + 34 + 95 + 446 + 2947 + 28938 + 364969 + 54580810 +    

and the generating function for 3-connected planar graphs (also called polyhedra)

̄() =

∞X
=1

̄


= 4 + 25 + 76 + 347 + 2578 + 26069 + 3230010 +    

do not appear to be easily related. The growth rate of {̄}∞=1, defined as  =
lim→∞ ̄

1
 , can be proved to exist and satisfies  ≤ 300606 = 249098 [10, 11, 12, 13].

We will discuss lower bounds on this constant shortly. Also, the asymptotics of

{̄}∞=1 are precisely known [14, 15, 16]:
̄ ∼ −72

where

 =
16

27

³
17 + 7

√
7
´
= 210490424755 = (00475080992)−1

and  is a constant (omitted).

The generating function for labeled planar graphs [17]

̄() =

∞X
=1

̄

!


= +
2

2!
2 +

8

3!
3 +

64

4!
4 +

1023

5!
5 +

32071

6!
6 +

1823707

7!
7 +    
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Figure 5: There exist 9 non-isomorphic 2-connected planar graphs of order 5.

the generating function for labeled connected planar graphs

̄() =

∞X
=1

̄

!


= +
1

2!
2 +

4

3!
3 +

38

4!
4 +

727

5!
5 +

26013

6!
6 +

1597690

7!
7 +    

and the generating function for labeled 2-connected planar graphs

̄() =

∞X
=1

̄

!


=
1

3!
3 +

10

4!
4 +

237

5!
5 +

10707

6!
6 +

774924

7!
7 +

78702536

8!
8 +    

satisfy

1 + ̄() = exp
¡
̄()

¢
 ̄ 0() = exp

¡
+ ̄0(̄ 0())

¢
where ̄ 0() and ̄0() denote the derivatives of ̄() and ̄(). The growth rate

of {̄}∞=1, defined as  = lim→∞(̄!)
1, can be proved to exist and satisfies

2722685    2722688 [18, 19, 20]. It is known that   , hence the lower

bound for  serves as a lower bound for . Further, the asymptotics of {̄}∞=1 are
exactly known [21]:

̄ ∼ −72!

where

 =
16 3

(1 + 3)(1− )3
= 261841125556 = (00381910976)−1
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 is the unique solution of

1 + 2

(1 + 3)(1− )
exp

∙
−

2(1− )(18 + 36+ 52)

2(3 + )(1 + 2)(1 + 3)2

¸
− 2 = 0

and  is a constant (again omitted). The growth constant for {̄}∞=1 is clearly the
same as that for {̄}∞=1, but which of the following formulas [20]:

̄ ∼ −52 ! or ̄ ∼ −72 !

is true? This appears to be a difficult question.

A graph is outerplanar if it can be embedded in the plane so that all its vertices

lie on the same face. This face, by convention, is usually chosen to be the unbounded

exterior of the graph. Any tree is an outerplanar graph. Non-outerplanar graphs

include the complete graph 4 with 4 vertices and all 6 edges, and the complete

bipartite graph 23 with 5 vertices and 6 edges. The unlabeled case has not received

much attention, except in the 2-connected case (the first three graphs in Figure 5,

each pentagonal, constitute all possibilities with 5 vertices). The generating function

for unlabeled 2-connected outerplanar graphs [22]

̂() =

∞X
=1

̂


= 3 + 24 + 35 + 96 + 207 + 758 + 2629 + 111710 +   

was obtained by Read [23, 24, 25], building on Motzkin [26]:

̂() =
(32 − 2 () + ()2)− (2 + 2+ 72 − 4 () + 2()2) (2) + 2(2)2

4 (2(2)− 1)

+
1

2

∞X
=3

1



⎛⎝X
|

()
¡
()

¢⎞⎠
where

() = +

∞X
=1

1



∞X
=2

µ
− 2
 − 1

¶µ
 + − 1



¶


and  is the Euler totient function. Counting such graphs is closely related to enu-

merating the number of dissections of the interior of a regular -gon into smaller

polygons by use of nonintersecting diagonals. Asymptotics for ̂ are presently open.

It would be good to learn more about ̂ and ̂ too.
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In contrast, the generating function for labeled outerplanar graphs [22]

̂() =

∞X
=1

̂

!


= +
2

2!
2 +

8

3!
3 +

63

4!
4 +

893

5!
5 +

19714

6!
6 +

597510

7!
7 +    

the generating function for labeled connected outerplanar graphs

̂() =

∞X
=1

̂

!


= +
1

2!
2 +

4

3!
3 +

37

4!
4 +

602

5!
5 +

14436

6!
6 +

458062

7!
7 +    

and the generating function for labeled 2-connected outerplanar graphs

̂() =

∞X
=1

̂

!


=
1

3!
3 +

9

4!
4 +

132

5!
5 +

2700

6!
6 +

70920

7!
7 +

2275560

8!
8 +    

satisfy

1 + ̂() = exp
³
̂()

´
 ̂ 0() = exp

³
̂ 0() + ̂0(̂ 0())

´
and, further,

̂0() =
1

8

³
1 + 5−

√
1− 6+ 2

´
− 

In view of the algebraic nature of ̂0(), it is not surprising that the growth constants
possess closed-form expressions [27, 28, 29]:

lim
→∞

Ã
̂

!

!1
=

1


exp

Ã
1 + 5 −

p
1− 6 + 2

8

!
= 73209800548 = (01365937336)−1

where  = 01707649868 has minimal polynomial 8− 58+702− 283 +34, and

lim
→∞

Ã
̂

!

!1
= 3 + 2

√
2 = 58284271247

Like before, the growth constant for {̂}∞=1 is the same as that for {̂}∞=1.
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0.1. Addendum. Giménez & Noy [30, 31] recently demonstrated that the growth

constant for labeled planar graphs is  = 272268777685. Bodirsky, Fusy, Kang &

Vigerske [32] showed that

̂ ∼ (000909941)−52(750360)

̂ ∼ (000760471)−52(750360)
̂ ∼ (000596026)−52

³
3 + 2

√
2
´
;

note that growth rates of unlabeled and labeled 2-connected outerplanar graphs co-

incide, whereas growth rates for the connected and general cases differ.

Upon introduction of randomness, we are quickly overwhelmed with various nu-

merical results, far too many to summarize. Here are two examples [31]. Let 

denote the number of edges in a uniform planar graph with  vertices. Then  is

asymptotically normal with mean (221326) and variance (043034) as →∞.
Let  denote the number of connected components in a uniform planar graph with

 vertices. Then − 1 is asymptotically Poisson with parameter  ≈ 0037439. As
consequences, the probability that a random planar graph is connected is exp(−) ≈
0963253 and the expected number of components is 1 +  = 1037439 as  → ∞.
More such results appear in [33, 34, 35, 36, 37, 38, 39, 40, 41, 42].
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