Planar Graph Growth Constants

Steven Finch

August 25, 2004
A graph of order n consists of a set of n vertices (points) together with a set of edges (unordered pairs of distinct points). Note that loops and multiple parallel edges are automatically disallowed. Two vertices joined by an edge are called adjacent. Two graphs X and Y are isomorphic if there is a one-to-one map from the vertices of X to the vertices of Y that preserves adjacency (see Figure 1). Diagrams for all non-isomorphic graphs of order ≤ 7 appear in [1].

A graph is connected if, for any two distinct vertices u and w, there is a sequence of adjacent vertices $v_{0}, v_{1}, \ldots, v_{m}$ such that $v_{0}=u$ and $v_{m}=w$ (see Figure 2). The generating function for graphs [2]

$$
\begin{aligned}
g(x) & =\sum_{n=1}^{\infty} g_{n} x^{n} \\
& =x+2 x^{2}+4 x^{3}+11 x^{4}+34 x^{5}+156 x^{6}+1044 x^{7}+12346 x^{8}+274668 x^{9}+\ldots,
\end{aligned}
$$

and the generating function for connected graphs

$$
\begin{aligned}
c(x) & =\sum_{n=1}^{\infty} c_{n} x^{n} \\
& =x+x^{2}+2 x^{3}+6 x^{4}+21 x^{5}+112 x^{6}+853 x^{7}+11117 x^{8}+261080 x^{9}+\ldots
\end{aligned}
$$

are related via the Euler transform [3]

$$
1+g(x)=\exp \left(\sum_{k=1}^{\infty} \frac{c\left(x^{k}\right)}{k}\right) .
$$

If we agree that $g_{0}=1$, then the coefficients satisfy

$$
g_{n}=\frac{1}{n} \sum_{k=1}^{n}\left(\sum_{d \mid k} d c_{d}\right) g_{n-k}, \quad n \geq 1 .
$$

[^0]

Figure 1: There exist 4 non-isomorphic graphs of order 3, that is, $g_{3}=4$.

Figure 2: There exist 6 non-isomorphic connected graphs of order 4 , that is, $c_{4}=6$.

Asymptotically, $g_{n} \sim 2^{n(n-1) / 2} / n$! as $n \rightarrow \infty$, or more precisely $[4,5,6]$,

$$
g_{n} \sim \frac{2^{n(n-1) / 2}}{n!}\left(1+2 \frac{n(n-1)}{2^{n}}+\frac{8}{3} \frac{n(n-1)(n-2)(3 n-7)}{2^{2 n}}+O\left(\frac{n^{5}}{2^{5 n / 2}}\right)\right)
$$

A separating set or vertex cut of a graph X is a subset of the vertices of X, the removal of which disconnects X. Let k be a nonnegative integer. A graph is k-connected if every vertex cut has at least k vertices. Clearly any graph is 0 connected and 1-connectedness is equivalent to connectedness. A 2-connected graph is often called biconnected or nonseparable and a 3-connected graph is often called triconnected. Observe that, when we count graphs, we do so abstractly; we are not counting embeddings in the plane or on the sphere (Figures 3 and 4).

If we label the vertices of a graph distinctly with the integers $1,2, \ldots, n$, the corresponding enumeration problems often simplify; for example, there are exactly $2^{n(n-1) / 2}$ labeled graphs. The generating function for labeled graphs

$$
G(x)=\sum_{n=1}^{\infty} \frac{G_{n}}{n!} x^{n}=\sum_{n=1}^{\infty} \frac{2^{n(n-1) / 2}}{n!} x^{n}
$$

and the generating function for connected labeled graphs [7]

$$
\begin{aligned}
C(x) & =\sum_{n=1}^{\infty} \frac{C_{n}}{n!} x^{n} \\
& =x+\frac{1}{2!} x^{2}+\frac{4}{3!} x^{3}+\frac{38}{4!} x^{4}+\frac{728}{5!} x^{5}+\frac{26704}{6!} x^{6}+\frac{1866256}{7!} x^{7}+\ldots
\end{aligned}
$$

Figure 3: The left-hand pair of 1-connected graphs are isomorphic yet are distinct planar embeddings. The right-hand pair of 1-connected graphs are isomorphic yet are distinct spherical embeddings.

Figure 4: The left-hand pair of 2 -connected graphs are isomorphic yet are distinct planar embeddings. The right-hand pair of 2 -connected graphs are isomorphic yet are distinct spherical embeddings.
satisfy $[3,8]$

$$
1+G(x)=\exp (C(x)), \quad G_{n}=\frac{1}{n} \sum_{k=1}^{n}\binom{n}{k} k G_{n-k} C_{k},
$$

where again we agree that $G_{0}=1$. In fact, $C_{n} \sim G_{n}$ as $n \rightarrow \infty$; consequently, almost all graphs are connected [6]. Likewise, almost all graphs are 2-connected.

A graph is planar if it can be embedded in the plane (as opposed to a map, which is a graph together with its embedding). In other words, a planar graph can be drawn so that no two edges meet except at a vertex at which both are incident. The first example of a nonplanar graph is the complete graph K_{5} with 5 vertices and all 10 edges; a second well-known example is the complete bipartite graph $K_{3,3}$ with 6 vertices (three houses and three utilities) and 9 edges (each house is adjacent to
each utility). The generating function for planar graphs [9]

$$
\begin{aligned}
\bar{g}(x) & =\sum_{n=1}^{\infty} \bar{g}_{n} x^{n} \\
& =x+2 x^{2}+4 x^{3}+11 x^{4}+33 x^{5}+142 x^{6}+822 x^{7}+6966 x^{8}+79853 x^{9}+\ldots
\end{aligned}
$$

the generating function for connected planar graphs

$$
\begin{aligned}
\bar{c}(x) & =\sum_{n=1}^{\infty} \bar{c}_{n} x^{n} \\
& =x+x^{2}+2 x^{3}+6 x^{4}+20 x^{5}+99 x^{6}+646 x^{7}+5974 x^{8}+71885 x^{9}+\ldots
\end{aligned}
$$

the generating function for 2-connected planar graphs (see Figure 5)

$$
\begin{aligned}
\bar{b}(x) & =\sum_{n=1}^{\infty} \bar{b}_{n} x^{n} \\
& =x^{3}+3 x^{4}+9 x^{5}+44 x^{6}+294 x^{7}+2893 x^{8}+36496 x^{9}+545808 x^{10}+\ldots,
\end{aligned}
$$

and the generating function for 3-connected planar graphs (also called polyhedra)

$$
\begin{aligned}
\bar{a}(x) & =\sum_{n=1}^{\infty} \bar{a}_{n} x^{n} \\
& =x^{4}+2 x^{5}+7 x^{6}+34 x^{7}+257 x^{8}+2606 x^{9}+32300 x^{10}+\ldots
\end{aligned}
$$

do not appear to be easily related. The growth rate of $\left\{\bar{g}_{n}\right\}_{n=1}^{\infty}$, defined as $\gamma_{u}=$ $\lim _{n \rightarrow \infty} \bar{g}_{n}^{1 / n}$, can be proved to exist and satisfies $\gamma_{u} \leq 30.0606=2^{4.9098}[10,11,12,13]$. We will discuss lower bounds on this constant shortly. Also, the asymptotics of $\left\{\bar{a}_{n}\right\}_{n=1}^{\infty}$ are precisely known $[14,15,16]$:

$$
\bar{a}_{n} \sim \kappa n^{-7 / 2} \alpha^{n}
$$

where

$$
\alpha=\frac{16}{27}(17+7 \sqrt{7})=21.0490424755 \ldots=(0.0475080992 \ldots)^{-1}
$$

and κ is a constant (omitted).
The generating function for labeled planar graphs [17]

$$
\begin{aligned}
\bar{G}(x) & =\sum_{n=1}^{\infty} \frac{\bar{G}_{n}}{n!} x^{n} \\
& =x+\frac{2}{2!} x^{2}+\frac{8}{3!} x^{3}+\frac{64}{4!} x^{4}+\frac{1023}{5!} x^{5}+\frac{32071}{6!} x^{6}+\frac{1823707}{7!} x^{7}+\ldots
\end{aligned}
$$

Figure 5: There exist 9 non-isomorphic 2-connected planar graphs of order 5.
the generating function for labeled connected planar graphs

$$
\begin{aligned}
\bar{C}(x) & =\sum_{n=1}^{\infty} \frac{\bar{C}_{n}}{n!} x^{n} \\
& =x+\frac{1}{2!} x^{2}+\frac{4}{3!} x^{3}+\frac{38}{4!} x^{4}+\frac{727}{5!} x^{5}+\frac{26013}{6!} x^{6}+\frac{1597690}{7!} x^{7}+\ldots,
\end{aligned}
$$

and the generating function for labeled 2-connected planar graphs

$$
\begin{aligned}
\bar{B}(x) & =\sum_{n=1}^{\infty} \frac{\bar{B}_{n}}{n!} x^{n} \\
& =\frac{1}{3!} x^{3}+\frac{10}{4!} x^{4}+\frac{237}{5!} x^{5}+\frac{10707}{6!} x^{6}+\frac{774924}{7!} x^{7}+\frac{78702536}{8!} x^{8}+\ldots,
\end{aligned}
$$

satisfy

$$
1+\bar{G}(x)=\exp (\bar{C}(x)), \quad \bar{C}^{\prime}(x)=\exp \left(x+\bar{B}^{\prime}\left(x \bar{C}^{\prime}(x)\right)\right)
$$

where $\bar{C}^{\prime}(x)$ and $\bar{B}^{\prime}(x)$ denote the derivatives of $\bar{C}(x)$ and $\bar{B}(x)$. The growth rate of $\left\{\bar{G}_{n}\right\}_{n=1}^{\infty}$, defined as $\gamma_{l}=\lim _{n \rightarrow \infty}\left(\bar{G}_{n} / n!\right)^{1 / n}$, can be proved to exist and satisfies $27.22685<\gamma_{l}<27.22688$ [18, 19, 20]. It is known that $\gamma_{l}<\gamma_{u}$, hence the lower bound for γ_{l} serves as a lower bound for γ_{u}. Further, the asymptotics of $\left\{\bar{B}_{n}\right\}_{n=1}^{\infty}$ are exactly known [21]:

$$
\bar{B}_{n} \sim \lambda n^{-7 / 2} \beta^{n} n!
$$

where

$$
\beta=\frac{16 \tau^{3}}{(1+3 \tau)(1-\tau)^{3}}=26.1841125556 \ldots=(0.0381910976 \ldots)^{-1}
$$

τ is the unique solution of

$$
\frac{1+2 t}{(1+3 t)(1-t)} \exp \left[-\frac{t^{2}(1-t)\left(18+36 t+5 t^{2}\right)}{2(3+t)(1+2 t)(1+3 t)^{2}}\right]-2=0
$$

and λ is a constant (again omitted). The growth constant for $\left\{\bar{C}_{n}\right\}_{n=1}^{\infty}$ is clearly the same as that for $\left\{\bar{G}_{n}\right\}_{n=1}^{\infty}$, but which of the following formulas [20]:

$$
\bar{C}_{n} \sim \mu n^{-5 / 2} \gamma_{l}^{n} n!\quad \text { or } \quad \bar{C}_{n} \sim \mu n^{-7 / 2} \gamma_{l}^{n} n!
$$

is true? This appears to be a difficult question.
A graph is outerplanar if it can be embedded in the plane so that all its vertices lie on the same face. This face, by convention, is usually chosen to be the unbounded exterior of the graph. Any tree is an outerplanar graph. Non-outerplanar graphs include the complete graph K_{4} with 4 vertices and all 6 edges, and the complete bipartite graph $K_{2,3}$ with 5 vertices and 6 edges. The unlabeled case has not received much attention, except in the 2-connected case (the first three graphs in Figure 5, each pentagonal, constitute all possibilities with 5 vertices). The generating function for unlabeled 2-connected outerplanar graphs [22]

$$
\begin{aligned}
\hat{b}(x) & =\sum_{n=1}^{\infty} \hat{b}_{n} x^{n} \\
& =x^{3}+2 x^{4}+3 x^{5}+9 x^{6}+20 x^{7}+75 x^{8}+262 x^{9}+1117 x^{10}+\ldots
\end{aligned}
$$

was obtained by Read [23, 24, 25], building on Motzkin [26]:

$$
\begin{aligned}
\hat{b}(x)= & \frac{\left(3 x^{2}-2 x f(x)+f(x)^{2}\right)-\left(2+2 x+7 x^{2}-4 x f(x)+2 f(x)^{2}\right) f\left(x^{2}\right)+2 f\left(x^{2}\right)^{2}}{4\left(2 f\left(x^{2}\right)-1\right)} \\
& +\frac{1}{2} \sum_{k=3}^{\infty} \frac{1}{k}\left(\sum_{d \mid k} \varphi(d)\left(f\left(x^{d}\right)\right)^{k / d}\right)
\end{aligned}
$$

where

$$
f(x)=x+\sum_{r=1}^{\infty} \frac{1}{r} \sum_{s=2}^{\infty}\binom{s-2}{r-1}\binom{r+s-1}{s} x^{s}
$$

and φ is the Euler totient function. Counting such graphs is closely related to enumerating the number of dissections of the interior of a regular n-gon into smaller polygons by use of nonintersecting diagonals. Asymptotics for \hat{b}_{n} are presently open. It would be good to learn more about \hat{c}_{n} and \hat{g}_{n} too.

In contrast, the generating function for labeled outerplanar graphs [22]

$$
\begin{aligned}
\hat{G}(x) & =\sum_{n=1}^{\infty} \frac{\hat{G}_{n}}{n!} x^{n} \\
& =x+\frac{2}{2!} x^{2}+\frac{8}{3!} x^{3}+\frac{63}{4!} x^{4}+\frac{893}{5!} x^{5}+\frac{19714}{6!} x^{6}+\frac{597510}{7!} x^{7}+\ldots
\end{aligned}
$$

the generating function for labeled connected outerplanar graphs

$$
\begin{aligned}
\hat{C}(x) & =\sum_{n=1}^{\infty} \frac{\hat{C}_{n}}{n!} x^{n} \\
& =x+\frac{1}{2!} x^{2}+\frac{4}{3!} x^{3}+\frac{37}{4!} x^{4}+\frac{602}{5!} x^{5}+\frac{14436}{6!} x^{6}+\frac{458062}{7!} x^{7}+\ldots,
\end{aligned}
$$

and the generating function for labeled 2-connected outerplanar graphs

$$
\begin{aligned}
\hat{B}(x) & =\sum_{n=1}^{\infty} \frac{\hat{B}_{n}}{n!} x^{n} \\
& =\frac{1}{3!} x^{3}+\frac{9}{4!} x^{4}+\frac{132}{5!} x^{5}+\frac{2700}{6!} x^{6}+\frac{70920}{7!} x^{7}+\frac{2275560}{8!} x^{8}+\ldots,
\end{aligned}
$$

satisfy

$$
1+\hat{G}(x)=\exp (\hat{C}(x)), \quad \hat{C}^{\prime}(x)=\exp \left(x \hat{C}^{\prime}(x)+\hat{B}^{\prime}\left(x \hat{C}^{\prime}(x)\right)\right)
$$

and, further,

$$
\hat{B}^{\prime}(x)=\frac{1}{8}\left(1+5 x-\sqrt{1-6 x+x^{2}}\right)-x .
$$

In view of the algebraic nature of $\hat{B}^{\prime}(x)$, it is not surprising that the growth constants possess closed-form expressions [27, 28, 29]:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\frac{\hat{G}_{n}}{n!}\right)^{1 / n} & =\frac{1}{\xi} \exp \left(\frac{1+5 \xi-\sqrt{1-6 \xi+\xi^{2}}}{8}\right) \\
& =7.3209800548 \ldots=(0.1365937336 \ldots)^{-1}
\end{aligned}
$$

where $\xi=0.1707649868 \ldots$ has minimal polynomial $8-58 x+70 x^{2}-28 x^{3}+3 x^{4}$, and

$$
\lim _{n \rightarrow \infty}\left(\frac{\hat{B}_{n}}{n!}\right)^{1 / n}=3+2 \sqrt{2}=5.8284271247 \ldots
$$

Like before, the growth constant for $\left\{\hat{C}_{n}\right\}_{n=1}^{\infty}$ is the same as that for $\left\{\hat{G}_{n}\right\}_{n=1}^{\infty}$.
0.1. Addendum. Giménez \& Noy [30, 31] recently demonstrated that the growth constant for labeled planar graphs is $\gamma_{l}=27.2268777685 \ldots$... Bodirsky, Fusy, Kang \& Vigerske [32] showed that

$$
\begin{aligned}
& \hat{g}_{n} \sim(0.00909941 \ldots) n^{-5 / 2}(7.50360 \ldots)^{n}, \\
& \hat{c}_{n} \sim(0.00760471 \ldots) n^{-5 / 2}(7.50360 \ldots)^{n}, \\
& \hat{b}_{n} \sim(0.00596026 \ldots) n^{-5 / 2}(3+2 \sqrt{2})^{n} ;
\end{aligned}
$$

note that growth rates of unlabeled and labeled 2-connected outerplanar graphs coincide, whereas growth rates for the connected and general cases differ.

Upon introduction of randomness, we are quickly overwhelmed with various numerical results, far too many to summarize. Here are two examples [31]. Let P_{n} denote the number of edges in a uniform planar graph with n vertices. Then P_{n} is asymptotically normal with mean (2.21326...) n and variance ($0.43034 \ldots$) n as $n \rightarrow \infty$. Let Q_{n} denote the number of connected components in a uniform planar graph with n vertices. Then $Q_{n}-1$ is asymptotically Poisson with parameter $\nu \approx 0.037439$. As consequences, the probability that a random planar graph is connected is $\exp (-\nu) \approx$ 0.963253 and the expected number of components is $1+\nu=1.037439$ as $n \rightarrow \infty$. More such results appear in [33, 34, 35, 36, 37, 38, 39, 40, 41, 42].

References

[1] R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford Univ. Press, 1998; MR1692656 (2000a:05001).
[2] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000088, A001349, A002218, and A006290.
[3] N. J. A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995, pp. 19-21; MR1327059 (96a:11001).
[4] W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Annalen 174 (1967) 53-78; MR0218255 (36 \#1342).
[5] E. M. Wright, The number of graphs on many unlabelled nodes, Math. Annalen 183 (1969) 250-253; MR0250928 (40 \#4160).
[6] F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, pp. 195-208; MR0357214 (50 \#9682).
[7] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A001187 and A095983.
[8] H. S. Wilf, generatingfunctionology, $2^{\text {nd }}$ ed., Academic Press, 1994, pp. 86-87; http://www.cis.upenn.edu/~wilf/; MR 95a:05002.
[9] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A005470, A003094, A021103, and A000944.
[10] A. Denise, M. Vasconcellos and D. J. A. Welsh, The random planar graph, Festschrift for C. St. J. A. Nash-Williams, ed. A. J. W. Hilton, Congr. Numer. 113, Utilitas Math., 1996, pp. 61-79; MR1393702 (97e:05171).
[11] N. Bonichon, C. Gavoille and N. Hanusse, An information-theoretic upper bound of planar graphs using triangulation, Proc. 2003 Symp. on Theoretical Aspects of Computer Science (STACS), Berlin, ed. H. Alt and M. Habib, Lect. Notes in Comp. Sci. 2607, Springer-Verlag, 2003, pp. 499-510; MR2066778.
[12] N. Bonichon, C. Gavoille, N. Hanusse, D. Poulalhon and G. Schaeffer, Planar graphs, via well-orderly maps and trees, Proc. $30^{\text {th }}$ International Workshop on Graph-Theoretic Concepts in Computer Science (WG), Bad Honnef, ed. J. Hromkovic, M. Nagl and B. Westfechtel, Lect. Notes in Comp. Sci. 3353, Springer-Verlag, 2004, pp. 270-284; MR2158652 (2006d:05059).
[13] N. Bonichon, C. Gavoille, N. Hanusse, D. Poulalhon and G. Schaeffer, Planar graphs, via well-orderly maps and trees, Graphs Combin. 22 (2006) 185-202; MR2231990 (2007g:05085).
[14] E. A. Bender and L. B. Richmond, The asymptotic enumeration of rooted convex polyhedra, J. Combin. Theory Ser. B 36 (1984) 276-283; MR0753605 (85m:05004).
[15] E. A. Bender and N. C. Wormald, Almost all convex polyhedra are asymmetric, Canad. J. Math. 37 (1985) 854-871; MR0806644 (87b:52014).
[16] H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag, 1991, sect. B15; MR1107516 (92c:52001).
[17] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A086789, A096332, A096331, and A096330.
[18] C. McDiarmid, A. Steger and D. J. A. Welsh, Random planar graphs, J. Combin. Theory Ser. B 93 (2005) 187-205; MR2117936 (2005k:05221).
[19] D. Osthus, H. J. Prömel and A. Taraz, On random planar graphs, the number of planar graphs and their triangulations, J. Combin. Theory Ser. B 88 (2003) 119-134; MR1973264 (2004a:05068).
[20] O. Giménez and M. Noy, Estimating the growth constant of labelled planar graphs, Proc. $3^{\text {rd }}$ Colloq. on Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities, Vienna, 2004, ed. M. Drmota, P. Flajolet, D. Gardy and B. Gittenberger, Birkhäuser, 2004, pp. 133-139; MR2090501 (2005f:05077).
[21] E. A. Bender, Z. Gao and N. C. Wormald, The number of labeled 2-connected planar graphs, Elec. J. Combin. 9 (2002) R43; MR1946145 (2003i:05071).
[22] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A001004, A097998, A097999, A098000.
[23] R. C. Read, On general dissections of a polygon, Aequationes Math. 18 (1978) 370-388; MR0522523 (80e:05069).
[24] P. Lisonek, Closed forms for the number of polygon dissections, J. Symbolic Comput. 20 (1995) 595-601; MR1395415 (97j:52019).
[25] G. Hu, Group theory method for enumeration of outerplanar graphs, Acta Math. Appl. Sinica 14 (1998) 381-387; MR1651268 (99h:05061).
[26] T. Motzkin, Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for nonassociative products, Bull. Amer. Math. Soc. 54 (1948) 352-360; MR0024411 (9,489d).
[27] M. Bodirsky, O. Giménez, M. Kang and M. Noy, On the number of series parallel and outerplanar graphs, Proc. European Conf. on Combinatorics, Graph Theory, and Applications (EuroComb05), DMTCS Proc. AE (2005) 383-388.
[28] M. Bodirsky, O. Giménez, M. Kang and M. Noy, Enumeration and limit laws for series-parallel graphs, European J. Combin. 28 (2007) 2091-2105; math.CO/0512435; MR2351512 (2008i:05087).
[29] P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204 (1999) 203-229; MR1691870 (2000c:05012).
[30] O. Giménez and M. Noy, The number of planar graphs and properties of random planar graphs, Proc. International Conf. on Analysis of Algorithms, DMTCS Proc. AD (2005) 147-156.
[31] O. Giménez and M. Noy, Asymptotic enumeration and limit laws of planar graphs, J. Amer. Math. Soc. 22 (2009) 309-329; arXiv:math/0501269; MR2476775 (2010g:05031).
[32] M. Bodirsky, E. Fusy, M. Kang and S. Vigerske, Enumeration and asymptotic properties of unlabeled outerplanar graphs, Elec. J. Combin. 14 (2007) R66; arXiv:math/0511422; MR2350456 (2008j:05171).
[33] M. Drmota, O. Giménez and M. Noy, Degree distribution in random planar graphs, Fifth Colloquium on Mathematics and Computer Science, DMTCS Proc. AI, (2008) 163-1781; MR2508785 (2010g:05338).
[34] M. Drmota, O. Giménez and M. Noy, Degree distribution in random planar graphs, J. Combin. Theory Ser. A 118 (2011) 2102-2130; arXiv:0911.4331; MR2802191 (2012i:05258).
[35] M. Drmota, O. Giménez and M. Noy, Vertices of given degree in seriesparallel graphs, Random Structures Algorithms 36 (2010) 273-314; MR2650053 (2011h:05226).
[36] M. Drmota, O. Giménez and M. Noy, The maximum degree of seriesparallel graphs, Combin. Probab. Comput. 20 (2011) 529-570; arXiv:1008.5361; MR2805397 (2012e:05342).
[37] M. Drmota, O. Giménez, M. Noy, K. Panagiotou and A. Steger, The maximum degree of random planar graphs, Proc. Lond. Math. Soc. 109 (2014) 892-920; MR3273487.
[38] N. Fountoulakis and K. Panagiotou, 3-connected cores in random planar graphs, Combin. Probab. Comput. 20 (2011) 381-412; arXiv:0907.2326; MR2784634 (2012d:05351).
[39] M. Bodirsky, M. Kang, M. Löffler and C. McDiarmid, Random cubic planar graphs, Random Structures Algorithms 30 (2007) 78-94; MR2283223 (2007k:05193).
[40] S. Gerke, O. Giménez, M. Noy and A. Weißl, The number of graphs not containing $K_{3,3}$ as a minor, Elec. J. Combin. 15 (2008) R114; arXiv:0803.4418; MR2438586 (2009d:05109).
[41] O. Bernardi, M. Noy and D. Welsh, Growth constants of minor-closed classes of graphs, J. Combin. Theory Ser. B 100 (2010) 468-484; arXiv:0710.2995; MR2644234 (2011h:05245).
[42] O. Giménez, M. Noy and J. Rué, Graph classes with given 3-connected components: asymptotic enumeration and random graphs, Random Structures Algorithms 42 (2013) 438-479; arXiv:0907.0376; MR3068033.

[^0]: ${ }^{0}$ Copyright © 2004 by Steven R. Finch. All rights reserved.

