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A pendulum is a bob of mass , attached to a frictionless pivot point via a

massless rod of length . The bob is free to swing from side to side in a vertical

plane. Let  denote the acceleration due to gravity. Let  denote the angle between

the rod and a vertical axis. The pendulum has two equilibrium positions, a stable

one at  = 0 (bottom) and an unstable one at  =  (top). Assume further that

we apply a torque  to the pendulum, increasing  (counterclockwise motion) when

  0. Let  be constrained by | | ≤  0. The angular equation of motion is [1, 2]


2

2
+  sin() = 
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and hence
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subject to || ≤ 1. We shall first solve a simple problem with  = 0 before allowing

more complicated controls in our study. For simplicity, let  = .

Let  = 1 for now. Let  = 2 and  = 0 at  = 0. Under these initial

conditions and the assumption that  = 0 for all , the pendulum swings down due

to gravity alone. What is the angular velocity when  = 0? Here an exact formula

exists:
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where () is the complete elliptic integral of the first kind and sn( ) is one of the

Jacobi elliptic functions [3]. Solving () = 0 gives [4]
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¶2
= 18540746773

and substituting this value into () gives −√2 = −14142135623 [5]. A simple

outcome as such is possible only because  = 0.

Assume either that  = 1 for all  or that  = −1 for all . Given initial conditions
(0) = 0 and (0) = 0, we have


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hence
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to be the time to reach , corresponding to  = 1 and
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to be the time to reach , corresponding to  = −1. For example, −(2 0 0 1; 0) =
12794771227 is the time required for the pendulum to swing down due to both grav-

ity and a clockwise unit torque. This is unsurprisingly less than the time 1854 cal-

culated for gravity alone. As another example, +(0 0 0 1;2) = 21000505566

is the time required for the pendulum to swing halfway up due to a counterclock-

wise unit torque. This is greater than the preceding since here we are working
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against gravity. These constants are unrecognizable, as are the associated velocities

− = −22675080272 and + = 10684533932 obtained using a nonlinear ODE

solver.

A more challenging problem is as follows [6, 7, 8]. Given (0 0) = (0 0), what is

the unique strategy to drive the pendulum to ( ) = ( 0) via a bang-bang control

 = ±1 with one switching? The solution is to initially apply  = 1 until the precise

time 1 when
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¶!
and subsequently apply  = −1 until the precise time ∞ when ( ) = ( 0). See

Figure 1. For example, if  = 1, then
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but this is valid only since cos()− 1 +   0 for all 0    . The minimizing

value min on the left-hand side of the inequality is − arcsin(). After substituting
min into the expression, we solve

1−  +
√
1− 2 +  arcsin() = 0

and obtain  = 07246113537 as the smallest number for which 1 is well-defined.

Both this number and a related quantity  − arcsin() = 23311223704 appear in
[9] in connection not with swing-up control, but rather with damping (from unstable

equilibrium position to stable). By contrast, the inequality cos()+1−+  0

does not impose any additional restrictions on .

If  = 12, then we need to consider bang-bang controls  = ±1 with two switch-
ings. Infinitely many strategies exist by which  = −1 is applied for 0    1,

 = 1 is applied for 1    2,  = −1 is applied for 2    ∞ and required

initial/terminal conditions for ( ) are satisfied. Of these, there is a unique strategy

with minimal ∞; see Figure 2. It is remarkable that optimality is achieved by first
allowing   0 (clockwise motion), seemingly out of the way, before simultaneously

reversing torque and exploiting gravity to push   13. Omitting the first stage

would lead to the pendulum falling far short of ( ) = ( 0).

If  = 34, then both a one-switching strategy and a minimal two-switching

strategy exist. For the former, the required time is ∞1 = 65690173615; for the
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Figure 1: Phase portrait ( on horizontal axis,  on vertical axis) for  = 1 from [6];

start at (0 0), switching at (2570 1207), end at ( 0).
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Figure 2: Phase portrait ( on horizontal axis,  on vertical axis) for  = 12 from [6];

start at (0 0), switchings at (−0877−0394) & (2693 0803), end at ( 0).
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latter, it is ∞2 = 58397. The motion with two switchings is faster:

∞1 − ∞2

∞2

≈ 125%

but a motion with three (or more) switchings cannot improve upon ∞2. We write

34(0 0) = 2, where (0 0) is the initial point and it is understood that the terminal

point is ( 0). In the same way, 1(0 0) = 1 and 12(0 0) = 2. Define  to be

the supremum of (0 0) over all 0 and 0 in the phase space.

Pontryagin’s principle guarantees that the optimal control, for any choice of ,

must be of bang-bang type. The complexity of such a control can be characterized

by the optimal switching number κ . Greater knowledge of the function  7→ κ is

therefore desirable. Numerical computations suggest that [10]

inf
=1

 ≈ 080 inf
=2

 ≈ 044

which are bifurcation values of the parameter  (analogous to bifurcation values of the

parameter  discussed in [11] with regard to quadratic iterates and period doubling).

More precise estimates of these values would be good to see someday.

0.1. Damping Control. This scenario is dual to that for swing-up [8, 9]. Given

(0 0) = ( 0), what is the unique strategy to drive the pendulum to ( ) = (0 0)

via a bang-bang control  = ±1 with one switching? The solution is to initially

apply  = −1 until the precise time ̃1 when

( ) =

Ã
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¶!

and subsequently apply  = 1 until the precise time ̃∞ when ( ) = (0 0). For

example, if  = 1, then

̃1 = −

µ
 0 0 ;
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¶
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!
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but again this is valid only since cos()− 1 +   0 for all 0    .

We write ̃1( 0) = 1, where ( 0) is the initial point and it is understood that

the terminal point is (0 0). One might expect that ̃1(0 0) to be 1 always, but this
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is false. By an example given in [12], ̃1(−100 1416) = 2 and the time improvement
is 027% (less dramatic than before). The principal bifurcation value here is [13]

inf
̃=1

 ≈ 104

and we have asymptotics [14]

inf
̃=

 ∼ 1





2
=
09259685259



as →∞, where the constant

 =

Z
0

sin()


 =

∞X
=0

(−1)2+1
(2 + 1)(2 + 1)!

= 18519370519

is well-known from approximation theory [15]. Although the theory in [14] is devoted

to damping, which differs substantially from swing-up, the asymptotic constant 2

evidently remains the same.

More references appear in [16], including mention of a double pendulum and chaos.

Time optimal control of such appears to be difficult [17].

0.2. Addendum. The formula 1 = 2 + 1 corresponding to one switching

has a complicated analog for two switchings [18]. Define

() =


2
+
cos()− 1

2
 () = () +



2
+
1




 ( ) =
p
−2(− )− 2 [cos()− cos()]

and solve for  via the following equation:

1

 (() )
+

1

 (() )
+

Z
()

− sin() + sin()
 ( )3

+

Z
()

− sin() + sin()
 ( )3

 = 0

In the event  = 12, we obtain  = −0937739 and hence 1 =  = −0877,
2 =  = 2693. In the event  = 34, we obtain  = −0521237 and hence
1 = −0349, 2 = 2554. To compute 1 and 2 involves  ( ) and  ( )

respectively.
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software to accurately calculate the cases  = 12 and  = 34, and for his helpful
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