Integer Partitions

Steven Finch

September 22, 2004
Let L denote the positive octant of the regular d-dimensional cubic lattice. Each vertex $\left(j_{1}, j_{2}, \ldots, j_{d}\right)$ of L is adjacent to all vertices of the form $\left(j_{1}, j_{2}, \ldots, j_{k}+1, \ldots, j_{d}\right)$, $1 \leq k \leq d$. A d-partition of a positive integer n is an assignment of nonnegative integers $n_{j_{1}, j_{2}, \ldots, j_{d}}$ to the vertices of L, subject to both an ordering condition

$$
n_{j_{1}, j_{2}, \ldots, j_{d}} \geq \max _{1 \leq k \leq d} n_{j_{1}, j_{2}, \ldots, j_{k}+1, \ldots, j_{d}}
$$

and a summation condition $\sum n_{j_{1}, j_{2}, \ldots, j_{d}}=n$. The summands in the d-partition are thus nonincreasing in each of the d lattice directions. We agree to suppress all zero labels. A 1-partition is the same as an ordinary partition; a 2-partition is often called a plane partition and a 3 -partition is often called a solid partition. Three sample plane partitions of $n=26$ are

$$
\left(\begin{array}{l}
8 \\
9 \\
9
\end{array}\right), \quad\left(\begin{array}{llll}
1 & & & \\
1 & & & \\
2 & 2 & 1 & \\
4 & 2 & 1 & 1 \\
5 & 3 & 2 & 1
\end{array}\right), \quad\left(\begin{array}{ccccccc}
7 & 6 & 4 & 4 & 3 & 1 & 1
\end{array}\right) .
$$

Let $p_{d}(n)$ denote the number of d-partitions of n. The generating functions [1]

$$
\begin{aligned}
1+\sum_{n=1}^{\infty} p_{1}(n) x^{n} & =1+x+2 x^{2}+3 x^{3}+5 x^{4}+7 x^{5}+11 x^{6}+15 x^{7}+22 x^{8}+\cdots \\
& =\prod_{m=1}^{\infty}\left(1-x^{m}\right)^{-1} \\
1+\sum_{n=1}^{\infty} p_{2}(n) x^{n} & =1+x+3 x^{2}+6 x^{3}+13 x^{4}+24 x^{5}+48 x^{6}+86 x^{7}+160 x^{8}+\cdots \\
& =\prod_{m=1}^{\infty}\left(1-x^{m}\right)^{-m}
\end{aligned}
$$

[^0]give rise to well-known asymptotics $[2,3,4,5]$:
\[

$$
\begin{aligned}
p_{1}(n) & \sim \frac{1}{4 \sqrt{3} n} \exp \left(\pi \sqrt{\frac{2 n}{3}}\right) \\
& \sim(0.1443375672 \ldots) n^{-1} \exp \left((2.5650996603 \ldots) n^{1 / 2}\right) \\
p_{2}(n) & \sim \frac{\zeta(3)^{7 / 36} e^{\zeta^{\prime}(-1)}}{2^{11 / 36} \sqrt{3 \pi} n^{25 / 36}} \exp \left(3 \zeta(3)^{1 / 3}\left(\frac{n}{2}\right)^{2 / 3}\right) \\
& \sim(0.2315168134 \ldots) n^{-25 / 36} \exp \left((2.0094456608 \ldots) n^{2 / 3}\right)
\end{aligned}
$$
\]

as $n \rightarrow \infty$, where $\zeta(3)=1.2020569031 \ldots$ is Apéry's constant [6] and $\zeta^{\prime}(-1)=$ $-0.1654211437 \ldots=2(-0.0827105718 \ldots)=\ln (0.8475366941 \ldots)$ is closely related to the Glaisher-Kinkelin constant [7]. Although an infinite product expression for the generating function [1]

$$
1+\sum_{n=1}^{\infty} p_{3}(n) x^{n}=1+x+4 x^{2}+10 x^{3}+26 x^{4}+59 x^{5}+140 x^{6}+307 x^{7}+684 x^{8}+\cdots
$$

remains unknown, it is conjectured that $[8,9]$

$$
\begin{aligned}
p_{3}(n) & \sim \frac{C}{n^{61 / 96}} \exp \left(\frac{2^{7 / 4} \pi}{3^{5 / 4} 5^{1 / 4}} n^{3 / 4}+\frac{\sqrt{15} \zeta(3)}{\sqrt{2} \pi^{2}} n^{1 / 2}-\frac{15^{5 / 4} \zeta(3)^{2}}{2^{7 / 4} \pi^{5}} n^{1 / 4}\right) \\
& \sim C n^{-61 / 96} \exp \left((1.7898156270 \ldots) n^{3 / 4}+(0.3335461354 \ldots) n^{1 / 2}-(0.0414392867 \ldots) n^{1 / 4}\right)
\end{aligned}
$$

for some constant $C>0$. The evidence for this asymptotic formula includes exact enumerations (for $n \leq 68$) and Monte Carlo simulation. See $[10,11,12,13]$ for more about planar partitions and $[14,15,16,17]$ for more about solid partitions.
0.1. Hardy-Ramanujan-Rademacher. The Hardy-Ramanujan-Rademacher formula for $p_{1}(n)$ is a spectacular exact result $[18,19,20,21,22,23,24,25,26]$:

$$
p_{1}(n)=\frac{\pi}{2^{5 / 4} 3^{3 / 4}}\left(n-\frac{1}{24}\right)^{-3 / 4} \sum_{k=1}^{\infty} \frac{A_{k}(n)}{k} I_{3 / 2}\left(\sqrt{\frac{2}{3}} \frac{\pi}{k} \sqrt{n-\frac{1}{24}}\right)
$$

where

$$
I_{3 / 2}(x)=\sqrt{\frac{2 x}{\pi}}\left(\frac{\cosh (x)}{x}-\frac{\sinh (x)}{x^{2}}\right)
$$

is the modified Bessel function of order 3/2,

$$
A_{k}(n)=\sum_{\substack{\operatorname{gcd}(h, k)=1, 1 \leq h<k}} \omega_{h, k} \exp \left(\frac{-2 \pi i n h}{k}\right)
$$

and $\omega_{h, k}=\exp (\pi i s(h, k))$ is the unique $24 k^{\text {th }}$ root of unity with Dedekind sum

$$
s(h, k)=\sum_{m=1}^{k-1}\left(\frac{m}{k}-\left\lfloor\frac{m}{k}\right\rfloor-\frac{1}{2}\right)\left(\frac{h m}{k}-\left\lfloor\frac{h m}{k}\right\rfloor-\frac{1}{2}\right) .
$$

For example,

$$
\begin{gathered}
A_{1}(n)=1, \quad A_{2}(n)=(-1)^{n}, \quad A_{3}(n)=2 \cos \left(\frac{\pi(12 n-1)}{18}\right) \\
A_{4}(n)=2 \cos \left(\frac{\pi(4 n-1)}{8}\right), \quad A_{5}(n)=2 \cos \left(\frac{\pi(2 n-1)}{5}\right)+2 \cos \left(\frac{4 \pi n}{5}\right) .
\end{gathered}
$$

Defining

$$
\begin{aligned}
c & =\sqrt{\frac{2}{3}} \pi, & & \lambda(n)=\sqrt{n-\frac{1}{24}} \\
\mu(n) & =c \lambda(n), & & A_{k}^{*}(n)=A_{k}(n) / \sqrt{k}
\end{aligned}
$$

we have the following variations:

$$
\begin{aligned}
p_{1}(n) & =\frac{1}{2^{1 / 2} \pi} \sum_{k=1}^{\infty} A_{k}(n) k^{1 / 2} \frac{d}{d n}\left[\frac{\sinh (c \lambda(n) / k)}{\lambda(n)}\right] \\
& =2 \frac{3^{1 / 2}}{24 n-1} \sum_{k=1}^{\infty} A_{k}^{*}(n)\left[\left(1-\frac{k}{\mu(n)}\right) \exp \left(\frac{\mu(n)}{k}\right)+\left(1+\frac{k}{\mu(n)}\right) \exp \left(-\frac{\mu(n)}{k}\right)\right] .
\end{aligned}
$$

In contrast, the original Hardy-Ramanujan formula is only an asymptotic expansion:

$$
\begin{aligned}
p_{1}(n) & \sim \frac{1}{2^{3 / 2} \pi} \sum_{k=1}^{\infty} A_{k}(n) k^{1 / 2} \frac{d}{d n}\left[\frac{\exp (c \lambda(n) / k)}{\lambda(n)}\right] \\
& \sim 2 \frac{3^{1 / 2}}{24 n-1} \sum_{k=1}^{\infty} A_{k}^{*}(n)\left(1-\frac{k}{\mu(n)}\right) \exp \left(\frac{\mu(n)}{k}\right),
\end{aligned}
$$

which was later proved to be divergent by Lehmer [27, 28, 29]. Therefore Rademacher's contribution was the identification of a small additional term that forces the original Hardy-Ramanujan series to converge.

A third formula for $p_{1}(n)$:

$$
p_{1}(n) \sim \frac{\pi}{2^{5 / 4} 3^{3 / 4}} \lambda(n)^{-3 / 2} \sum_{k=1}^{\infty} \frac{A_{k}(n)}{k} I_{-3 / 2}\left(\frac{c \lambda(n)}{k}\right)
$$

appears in Almkvist $[30,31]$ and is a consequence of a more general theory (to be discussed shortly). The only difference between this formula and the Hardy-RamanujanRademacher formula is that $I_{-3 / 2}$ appears rather than $I_{3 / 2}$. It is believed to be divergent, but this has not yet been proved. For practical purposes, using the modified Bessel function of order $-3 / 2$:

$$
I_{-3 / 2}(x)=\sqrt{\frac{2 x}{\pi}}\left(\frac{\sinh (x)}{x}-\frac{\cosh (x)}{x^{2}}\right)
$$

gives only slightly different numerical results (for large \sqrt{n} / k).
Analogous series exist for plane partitions. The terms involve neither exponentials nor Bessel functions, but rather a new function

$$
g(x, \gamma)=\sum_{\nu=0}^{\infty} \frac{x^{2 \nu+\gamma-1}}{\nu!\Gamma(2 \nu+\gamma)}
$$

that satisfies the third-order differential equation

$$
x g^{\prime \prime \prime}(x, \gamma)-(\gamma-3) g^{\prime \prime}(x, \gamma)-2 g(x, \gamma)=0
$$

(the derivatives are taken with respect to x) as well as

$$
g^{\prime}(x, \gamma)=g(x, \gamma-1), \quad 2 g(x, \gamma+2)+(\gamma-1) g(x, \gamma)=x g(x, \gamma-1)
$$

A heuristic argument in $[30,31]$ gives that

$$
p_{2}(n) \sim \varphi_{1}(n)+\varphi_{2}(n)+\varphi_{3}(n)+\cdots
$$

as $n \rightarrow \infty$, where

$$
\varphi_{1}(n)=\zeta(3)^{13 / 24} e^{\zeta^{\prime}(-1)} \sum_{k=0}^{\infty} a_{2 k} \zeta(3)^{k} g\left(n \sqrt{\zeta(3)},-\frac{1}{12}-2 k\right)
$$

and $a_{2 k}$ is the coefficient of $x^{2 k}$ in the Maclaurin series of

$$
h(x)=\exp \left(-\sum_{j=1}^{\infty} \frac{2(2 j+1)!\zeta(2 j) \zeta(2 j+2)}{j(2 \pi)^{4 j+2}} x^{2 j}\right)
$$

$$
\varphi_{2}(n)=(-1)^{n} 2^{-5 / 3} \zeta(3)^{7 / 12} e^{2 \zeta^{\prime}(-1)} \sum_{k=0}^{\infty} b_{2 k}\left(\frac{\zeta(3)}{8}\right)^{k} g\left(n \sqrt{\frac{\zeta(3)}{8}},-\frac{1}{6}-2 k\right)
$$

and $b_{2 k}$ is the coefficient of $y^{2 k}$ in the Maclaurin series of

$$
\frac{h(2 y)^{5}}{h(y) h(4 y)^{2}},
$$

and so forth. The additional terms $\varphi_{3}(n), \varphi_{4}(n)$ appear in [30] and $\varphi_{5}(n), \varphi_{6}(n)$ appear in [31]. Taken together, these terms provide remarkably accurate estimates of $p_{2}(n)$. Govindarajan \& Prabhakar [32] revisited Almkvist's results, using a modified function

$$
\tilde{g}(x, \gamma)=\frac{1}{2} \sum_{\nu=0}^{\infty} \frac{x^{\nu}}{\nu!\Gamma((3-\gamma+\nu) / 2)}
$$

that seems better behaved than $g(x, \gamma)$ and evidently does for $p_{2}(n)$ akin to what Rademacher's modification of Hardy-Ramanujan did for $p_{1}(n)$.
0.2. Addendum. Recent Monte Carlo work indicates that [33]

$$
\lim _{n \rightarrow \infty} n^{-3 / 4} \ln \left(p_{3}(n)\right) \approx 1.822>1.789 \ldots=\frac{2^{7 / 4} \pi}{3^{5 / 4} 5^{1 / 4}}
$$

contradicting $[8,9]$. The asymptotics of solid partitions appear to differ sharply from those of line and plane partitions; in addition to sub-leading terms of order $n^{1 / 2}, n^{1 / 4}$ and $\ln (n)$, there seems to be an oscillatory function at the $n^{-1 / 4}$ level. Theory lags far behind numerical experimentation here. Let

$$
\begin{aligned}
1+\sum_{n=1}^{\infty} q(n) x^{n} & =1+x+4 x^{2}+10 x^{3}+26 x^{4}+59 x^{5}+141 x^{6}+310 x^{7}+692 x^{8}+\cdots \\
& =\prod_{m=1}^{\infty}\left(1-x^{m}\right)^{-m(m+1) / 2}
\end{aligned}
$$

Although the MacMahon conjecture is incorrect $\left(p_{3}(n) \neq q(n)\right.$ for $\left.n>5\right)$, there is still a possibility that $p_{3}(n) \sim q(n)$ as $n \rightarrow \infty$. The conjectured asymptotics for $p_{3}(n)$ given earlier are validated asymptotics for $q(n)$. In a recent breakthrough, Kotesovec [34] deduced that the multiplicative constant C for $q(n)$ is

$$
2^{-157 / 96} 15^{-13 / 96} \exp \left(-\frac{\zeta(3)}{8 \pi^{2}}+\frac{75 \zeta(3)^{3}}{2 \pi^{8}}+\frac{\zeta^{\prime}(-1)}{2}\right) \pi^{1 / 24}=0.2135951604 \ldots
$$

and we look forward to seeing underlying details.

Let us consider one of many possible variations on 1-partitions. Define $\hat{p}_{1}(n)$ to be the number of partitions of n into integers, each of which may occur only an odd number of times. It can be shown that [35]

$$
\hat{p}_{1}(n) \sim \frac{B}{2 \pi n} \exp (2 B \sqrt{n})
$$

where

$$
\begin{aligned}
B^{2} & =\frac{\pi^{2}}{12}+\int_{0}^{1} \frac{\ln \left(1+x-x^{2}\right)}{x} d x=\frac{\pi^{2}}{12}+2 \ln (\varphi)^{2} \\
& =\frac{\pi^{2}}{12}+0.4631296411 \ldots=(1.1338415562 \ldots)^{2}
\end{aligned}
$$

and $\varphi=(1+\sqrt{5}) / 2$ is the Golden mean.

References

[1] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000041, A000219, and A000293.
[2] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. 17 (1918) 75-115; also in Collected Papers of S. Ramanujan, ed. G. H. Hardy, P. V. Seshu Aiyar, and B. M. Wilson, Cambridge Univ. Press, 1927, pp. 276-309.
[3] J. V. Uspensky, Asymptotic formulae for numerical functions which occur in the theory of partitions (in Russian), Izv. Akad. Nauk SSSR 14 (1920) 199-218.
[4] E. M. Wright, Asymptotic partition formulae. I, Plane partitions, Quart. J. Math. 2 (1931) 177-189.
[5] L. Mutafchiev and E. Kamenov, Asymptotic formula for the number of plane partitions of positive integers, C. R. Acad. Bulgare Sci. 59 (2006) 361-366; arXiv:math.CO/0601253; MR2229373.
[6] S. R. Finch, Apéry's constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 40-53.
[7] S. R. Finch, Glaisher-Kinkelin constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 135-145.
[8] V. Mustonen and R. Rajesh, Numerical estimation of the asymptotic behaviour of solid partitions of an integer, J. Phys. A 36 (2003) 6651-6659; arXiv:condmat/0303607; MR2004301.
[9] S. Balakrishnan, S. Govindarajan and N. Prabhakar, On the asymptotics of higher dimensional partitions, J. Phys. A 45 (2012) 055001; arXiv:1105.6231; MR2874261 (2012m:11142).
[10] B. Gordon and L. Houten, Notes on plane partitions. III, Duke Math. J. 36 (1969) 801-824; MR0248104 (40 \#1358).
[11] M. S. Cheema and W. E. Conway, Numerical investigation of certain asymptotic results in the theory of partitions, Math. Comp. 26 (1972) 999-1005; MR0314756 (47 \#3308).
[12] C. Knessl, Asymptotic behavior of high-order differences of the plane partition function, Discrete Math. 126 (1994) 179-193; MR1264486 (95b:11098).
[13] S. Shlosman, Applications of the Wulff construction to the number theory, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI) 292 (2002) 153160, 180; arXiv:math-ph/0109027; MR1944089 (2003k:11156).
[14] A. O. L. Atkin, P. Bratley, I. G. Macdonald, and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Cambridge Philos. Soc. 63 (1967) 1097-1100; MR0217029 (36 \#124).
[15] D. E. Knuth, A note on solid partitions, Math. Comp. 24 (1970) 955-961; MR0277401 (43 \#3134).
[16] F. Y. Wu, The infinite-state Potts model and restricted multidimensional partitions of an integer, Math. Comput. Modelling 26 (1997) 269-274; MR1492510 (98i:82020).
[17] H. Y. Huang and F. Y. Wu, The infinite-state Potts model and solid partitions of an integer, Internat. J. Modern Phys. B 11 (1997) 121-126; MR1435061 (98c:11145).
[18] H. Rademacher, A convergent series for the partition function $p(n)$, Proc. Nat. Acad. Sci. USA 23 (1937) 78-84.
[19] H. Rademacher, On the partition function $p(n)$, Proc. London Math. Soc. 43 (1937) 241-254.
[20] H. Rademacher, On the expansion of the partition function in a series, Annals of Math. 44 (1943) 416-422; MR0008618 (5,35a).
[21] G. H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, Chelsea, 1940, pp. 83-100, 113-131; MR0106147 (21 \#4881).
[22] R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963, pp 135-205; MR0160743 (28 \#3954).
[23] G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, pp. 68-87; MR1634067 (99c:11126).
[24] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, $2^{\text {nd }}$ ed., Springer-Verlag, 1990, pp. 94-112; MR1027834 (90j:11001).
[25] G. Almkvist and H. S. Wilf, On the coefficients in the Hardy-RamanujanRademacher formula for $p(n)$, J. Number Theory 50 (1995) 329-334; http://www.cis.upenn.edu/~wilf/reprints.html; MR1316828 (96e:11129).
[26] W. de Azevedo Pribitkin, Revisiting Rademacher's formula for the partition function $p(n)$, Ramanujan J. 4 (2000) 455-467; MR1811909 (2001m:11176).
[27] D. H. Lehmer, On the Hardy-Ramanujan series for the partition function, J. London Math. Soc. 12 (1937) 171-176.
[28] D. H. Lehmer, On the series for the partition function, Trans. Amer. Math. Soc. 43 (1938) 271-295.
[29] D. H. Lehmer, On the remainders and convergence of the series for the partition function, Trans. Amer. Math. Soc. 46 (1939) 362-373; MR0000410 (1,69c).
[30] G. Almkvist, A rather exact formula for the number of plane partitions, A Tribute to Emil Grosswald: Number Theory and Related Analysis, ed. M. Knopp and M. Sheingorn, Amer. Math. Soc., 1993, pp. 21-26; MR1210508 (94b:11103).
[31] G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Experim. Math. 7 (1998) 343-359; MR1678083 (2000d:11126).
[32] S. Govindarajan and N. S. Prabhakar, A superasymptotic formula for the number of plane partitions, arXiv:1311.7227.
[33] N. Destainville and S. Govindarajan, Estimating the asymptotics of solid partitions, J. Stat. Phys. 158 (2015) 950-967; arXiv:1406.5605; MR3311486.
[34] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000294 and A255939.
[35] F. C. Auluck, K. S. Singwi and B. K. Agarwala, On a new type of partition, Proc. Nat. Inst. Sci. India 16 (1950) 147-156; MR0038365 (12,392f).

[^0]: ${ }^{0}$ Copyright © 2004 by Steven R. Finch. All rights reserved.

