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Let  denote the positive octant of the regular -dimensional cubic lattice. Each

vertex (1 2     ) of  is adjacent to all vertices of the form (1 2      + 1     ),

1 ≤  ≤ . A -partition of a positive integer  is an assignment of nonnegative

integers 12 to the vertices of , subject to both an ordering condition

12 ≥ max
1≤≤

12+1

and a summation condition
P

12 = . The summands in the -partition are

thus nonincreasing in each of the  lattice directions. We agree to suppress all zero

labels. A 1-partition is the same as an ordinary partition; a 2-partition is often called

a plane partition and a 3-partition is often called a solid partition. Three sample

plane partitions of  = 26 are
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Let () denote the number of -partitions of . The generating functions [1]
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give rise to well-known asymptotics [2, 3, 4, 5]:
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∼ (02315168134)−2536 exp

¡
(20094456608)23

¢
as  → ∞, where (3) = 12020569031 is Apéry’s constant [6] and  0(−1) =
−01654211437 = 2(−00827105718) = ln(08475366941) is closely related to

the Glaisher-Kinkelin constant [7]. Although an infinite product expression for the

generating function [1]
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 = 1 + + 42 + 103 + 264 + 595 + 1406 + 3077 + 6848 + · · ·

remains unknown, it is conjectured that [8, 9]
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for some constant   0. The evidence for this asymptotic formula includes exact

enumerations (for  ≤ 68) and Monte Carlo simulation. See [10, 11, 12, 13] for more
about planar partitions and [14, 15, 16, 17] for more about solid partitions.

0.1. Hardy-Ramanujan-Rademacher. The Hardy-Ramanujan-Rademacher for-

mula for 1() is a spectacular exact result [18, 19, 20, 21, 22, 23, 24, 25, 26]:
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is the modified Bessel function of order 32,
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X
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and  = exp(( )) is the unique 24
th root of unity with Dedekind sum
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For example,

1() = 1 2() = (−1) 3() = 2 cos
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we have the following variations:
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In contrast, the original Hardy-Ramanujan formula is only an asymptotic expansion:
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which was later proved to be divergent by Lehmer [27, 28, 29]. Therefore Rademacher’s

contribution was the identification of a small additional term that forces the original

Hardy-Ramanujan series to converge.
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A third formula for 1():

1() ∼ 

254334
()−32
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¶
appears in Almkvist [30, 31] and is a consequence of a more general theory (to be dis-

cussed shortly). The only difference between this formula and the Hardy-Ramanujan-

Rademacher formula is that −32 appears rather than 32. It is believed to be di-

vergent, but this has not yet been proved. For practical purposes, using the modified

Bessel function of order −32:

−32() =

r
2



µ
sinh()


− cosh()

2

¶
gives only slightly different numerical results (for large

√
).

Analogous series exist for plane partitions. The terms involve neither exponentials

nor Bessel functions, but rather a new function

( ) =

∞X
=0

2+−1

!Γ(2 + )

that satisfies the third-order differential equation

000( )− ( − 3)00( )− 2( ) = 0

(the derivatives are taken with respect to ) as well as

0( ) = (  − 1) 2(  + 2) + ( − 1)( ) = (  − 1)

A heuristic argument in [30, 31] gives that

2() ∼ 1() + 2() + 3() + · · ·

as →∞, where
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and so forth. The additional terms 3(), 4() appear in [30] and 5(), 6()

appear in [31]. Taken together, these terms provide remarkably accurate estimates of

2(). Govindarajan & Prabhakar [32] revisited Almkvist’s results, using a modified

function

̃( ) =
1

2

∞X
=0



!Γ((3−  + )2)

that seems better behaved than ( ) and evidently does for 2() akin to what

Rademacher’s modification of Hardy-Ramanujan did for 1().

0.2. Addendum. Recent Monte Carlo work indicates that [33]

lim
→∞

−34 ln (3()) ≈ 1822  1789 = 274

354514


contradicting [8, 9]. The asymptotics of solid partitions appear to differ sharply from

those of line and plane partitions; in addition to sub-leading terms of order 12, 14

and ln(), there seems to be an oscillatory function at the −14 level. Theory lags
far behind numerical experimentation here. Let
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Although the MacMahon conjecture is incorrect (3() 6= () for   5), there is

still a possibility that 3() ∼ () as  → ∞. The conjectured asymptotics for

3() given earlier are validated asymptotics for (). In a recent breakthrough,

Kotesovec [34] deduced that the multiplicative constant  for () is

2−1579615−1396 exp
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82

+
75(3)3

28
+

 0(−1)
2

¶
124 = 02135951604

and we look forward to seeing underlying details.
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Let us consider one of many possible variations on 1-partitions. Define ̂1() to

be the number of partitions of  into integers, each of which may occur only an odd

number of times. It can be shown that [35]

̂1() ∼ 
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¡
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where

2 =
2

12
+
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0

ln(1 + − 2)


 =

2

12
+ 2 ln()2

=
2

12
+ 04631296411 = (11338415562)2

and  = (1 +
√
5)2 is the Golden mean.
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