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Define a family of functions

F =
(
1 +

∞X
=1


 :  ∈ {−1 0 1}

)
and three closed subsets of the open interval (0 1):

Ω2 = { : ∃ ∈ F for which () =  0() = 0} 
Ω3 = { : ∃ ∈ F for which () =  0() =  00() = 0} 

Ω4 = { : ∃ ∈ F for which () =  0() =  00() =  000() = 0} 
Elements of Ω2 are called double zeroes, those of Ω3 triple zeroes and those of Ω4
quadruple zeroes. For each  = 2 3 4, define [1]

 = minΩ e = supΩ



where Ω
 is the complement of Ω in (0 1). The structure of Ω is very complicated

— it appears to possess infinitely many connected components — but provably 2 =

06684756 and conjecturally

e2 = 0669 3 = 0743 e3 ≈ 075
No one has yet examined 4 or e4 numerically, as far as is known. Elements of Ω

2

are said to satisfy a certain tranversality condition, in the sense that  ∈ Ω
2 and

() = 0 imply that  0() 6= 0 for all  ∈ F . Such a property is useful in [2] for a

seemingly unrelated analysis of fractals.

Define instead

F̂ =
(
1 +

∞X
=1


 :  ∈ {−2−1 0 1 2}

)

and Ω̂2 to be the corresponding set of double zeroes in (0 1). In this case, min Ω̂2 is

precisely 12 and is an isolated point of Ω̂2. Removing 12 from Ω̂2 appears to give
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a connected set (that is, an interval) and the minimum of this set is conjectured to

be ≈ 05437. The fact that Ω2 and Ω̂2 are so distinct topologically is very striking

[1].

A different family of functions, studied earlier in [3, 4], is

G =
(
1 +

∞X
=1


 :  ∈ [−1 1]

)


Let  denote the associated minimum zero of order  (at least) of , taken over all

 ∈ G. It turns out that  is always algebraic: 2 = 06491378608 has minimal

polynomial

25 − 82 + 11 − 4
3 = 07278832326 has minimal polynomial

1012 − 1411 + 146 − 105 − 803 + 1852 − 147 + 40

and 4 = 07773295434 has minimal polynomial

12622 − 29621 + 17620 + 4412 − 10411 + 5410 + 967
−1466 + 565 − 6844 + 22363 − 27972 + 1584 − 342

Of course, 1 = 12, which corresponds to () = 1−
P∞

=1 
. The following least

squares approximation

 ≈ 1−
1

(123909318) + (081255949)

was obtained in [4] and is based on data up to  = 27. We wonder if more precise

asymptotics are feasible. Additional relevant references include [5, 6, 7].
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