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We present two problems: one is easy (for the sake of comparison) and the other

is difficult. The unique solution   0 of the equation
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as →∞. Define  = 1− 1, the first-order approximation, and a partial sum
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for   0. It follows that
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and such formulas for other values of  are possible.

The unique solution   0 of the equation
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satisfies [1, 2, 3]
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as →∞, where

1 = 06054436571 2 = −01046854594

3 = 01263143361 4 = −00159376251
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Bailey, Borwein & Crandall [2] proved the 1 is the unique solution  ∈ (0 2) of the
equation

(12 2) = 0

where
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is the Hurwitz zeta function (with analytic continuation). Further,
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but exact expressions for 3, 4 remain open [3]. Define  = 1− 1, the first-order
approximation, and a partial sum () exactly as before. It follows that
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It is believed that analogous formulas involving Hurwitz zeta function values should

exist for other choices of .

We refer to [1, 4] for discussion of the theory of self-synchronizing systems, and

hope to motivate the second (difficult) equation more clearly at a later time.
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