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We present two problems: one is easy (for the sake of comparison) and the other

is difficult. The unique solution s > 0 of the equation
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for z > 0. It follows that
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and such formulas for other values of x are possible.
The unique solution s > 0 of the equation

0= [2y/1-s2(1—24) !
=1 -

satisfies [1, 2, 3]
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as n — 0o, where
c1 = 0.6054436571...,  co = —0.1046854594...,
c3 = 0.1263143361..., ¢4 = —0.0159376251....
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QUINN-RAND-STROGATZ CONSTANT 2

Bailey, Borwein & Crandall [2] proved the ¢; is the unique solution y € (0,2) of the
equation
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is the Hurwitz zeta function (with analytic continuation). Further,
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but exact expressions for c3, ¢4 remain open [3]. Define s, = 1 — 1/n, the first-order
approximation, and a partial sum f,(z) exactly as before. It follows that
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It is believed that analogous formulas involving Hurwitz zeta function values should
exist for other choices of x.

We refer to [1, 4] for discussion of the theory of self-synchronizing systems, and
hope to motivate the second (difficult) equation more clearly at a later time.
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