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Consider the random product
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where 1, 2,   ,  are independent variables satisfying  ( = 1) =  ( = −1) =
12 for each . The maximum value of  () is  + 1, which occurs if and only if

all  are −1. The minimum value of  () is 1( + 1), which occurs if and only if

all  are 1. We are interested in the average behavior of  () and it makes sense

to examine ln( ()) henceforth (with extreme values − ln( + 1) and ln( + 1)

symmetric about the origin).

Before continuing, let us mention the random sum
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which converges almost surely [1, 2]. The maximum value of () diverges to ∞ as

 →∞ and the minimum value of () diverges to −∞. Clearly E(()) = 0 and

Var(()) =
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as  → ∞. It is perhaps surprising that Var(()) is finite. Define  = −1 if
 ≡ 0mod 3 and  = 1 otherwise; define  = −1 if  ≡ 2 3mod 4 and  = 1

otherwise. On the one hand [3],
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on the other hand [4],
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where  is the Euler-Mascheroni constant [5].

Returning to the product  (), we have E(ln( ())) = 0 and

Var(ln( ())) =
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as  → ∞. No closed-form expression for this expression is known. Again, it is

perhaps surprising that Var(ln( ())) is finite. By Wallis’ formula [6], we have
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but as before an unbalanced distribution of +1 and −1 exponents leads to divergence
(to either ∞ or 0).

Here is a far more difficult problem. Let () and () denote the numerator

and denominator of  (), expressed in lowest terms. Rather than maximizing  ()

for fixed  as previously, consider instead maximizing (). Note that, by changing

each  to −, the maximum value of () is equal to the maximum value of ().
Hence we lose nothing by studying only numerators in the following.

Let () denote the maximum value of (). See Table 1 for sample values [7].

For example, when  = 6,
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whereas
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is 2632;

hence (6) = 576. Nicolas [8] and de la Bretèche, Pomerance & Tenenbaum [9]

proved that

0107  liminf
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1

 ln()
ln(()) ≤ limsup
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3
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At the end of [9], the lower bound was improved to 0112 (due to Fouvry). We wonder

whether the limit supremum is equal to the limit infimum and, if so, what the limiting

value might be.

Table 1 Sample Values of Maximum Numerator () and of ln(())( ln())

 1 2 3 4 5 6

() 2 4 16 64 128 576
ln(())

 ln()
10000 08407 07500 06031 05909

 7 8 9 10 11 12

() 4608 16384 64000 640000 2560000 10240000
ln(())

 ln()
06195 05833 05596 05806 05592 05414
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0.1. Highly Composite Numbers. A positive integer  is highly composite

if, for all   , we have ()  (), where () denotes the number of distinct

divisors of . The integer  is also called a -champion. It is known that

|{ ≤  :  is highly composite}| = 
¡
ln()171

¢
as →∞, and conjectured that 171 can be replaced by any constant   ln(30) ln(16) =
12267 [10].

A positive integer  is superior highly composite if there exists   0 such

that, for all positive integers , we have () ≤ (). It is known that

|{ ≤  :  is superior highly composite}| ∼ ln()

as  → ∞. While these asymptotics are well-understood, those for the quotient of
two consecutive highly composite numbers are not.

Define

 = limsup
→∞

1

 ln()
ln(())

where () is as before. If is a sufficiently large superior highly composite number

and  0 is the highly composite number following  , then [10]

 0


≥ 1 + 1

ln()

for any constant    ln(2). Since we know  ≤ 23, it follows that the exponent
2(3 ln(2)) = 0961796 works. A sharper upper bound on  (for example,  ≤ 35
or even  ≤ 12) would be very helpful.
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