Chebyshev's Bias

Steven Finch

April 26, 2006
How do we quantify irregularities in the distribution of prime numbers? Define

$$
\pi_{q, a}(n)=\#\{p \leq n: p \equiv a \bmod q\}
$$

where $\operatorname{gcd}(a, q)=1$. A well-known result:

$$
\lim _{n \rightarrow \infty} \frac{\ln (n)}{n} \pi_{q, a}(n)=\frac{1}{\varphi(q)}
$$

informs us that primes are asymptotically equidistributed modulo q, where $\varphi(q)$ is the Euler totient. There is, however, unrest beneath the surface of such symmetry. For fixed $a_{1}, a_{1}, \ldots, a_{r}$ and q, define

$$
S_{N}=\#\left\{n \leq N: \pi_{q, a_{1}}(n)>\pi_{q, a_{2}}(n)>\ldots>\pi_{q, a_{r}}(n)\right\}
$$

and

$$
P\left(a_{1}>a_{2}>\ldots>a_{r} \bmod q\right)=\lim _{N \rightarrow \infty} \frac{1}{\ln (N)} \sum_{n \in S_{N}} \frac{1}{n}
$$

As the notation suggests, P is to be interpreted as a probability (via logarithmic measure). Rubinstein \& Sarnak [1], assuming both the Generalized Riemann Hypothesis and the Grand Simplicity Hypothesis [2], succeeded in proving that

$$
\begin{aligned}
& P(3>1 \bmod 4)=0.9959280 \ldots \\
& P(2>1 \bmod 3)=0.9990633 \ldots
\end{aligned}
$$

Feuerverger \& Martin [3] further proved that

$$
\begin{aligned}
& P(3>5>7 \bmod 8)=P(7>5>3 \bmod 8)=0.1928013 \ldots \\
& P(3>7>5 \bmod 8)=P(5>7>3 \bmod 8)=0.1664263 \ldots \\
& P(5>3>7 \bmod 8)=P(7>3>5 \bmod 8)=0.1407724 \ldots
\end{aligned}
$$

[^0]and
\[

$$
\begin{aligned}
& P(5>7>11 \bmod 12)=P(11>7>5 \bmod 12)=0.1984521 \ldots \\
& P(7>5>11 \bmod 12)=P(11>5>7 \bmod 12)=0.1799849 \ldots \\
& P(5>11>7 \bmod 12)=P(7>11>5 \bmod 12)=0.1215630 \ldots
\end{aligned}
$$
\]

thus it is more probable that 5 will occupy the middle position for $\bmod 8$, and 7 will occupy the middle position for $\bmod 12$!

New constants do not always emerge: we have, for example,

$$
P(1>4 \bmod 5)=P(2>3 \bmod 5)=\frac{1}{2}
$$

which is due to 1,4 being squares $\bmod 5$ and 2,3 being nonsquares $\bmod 5$. Also

$$
P(1>2>4 \bmod 7)=P(3>5>6 \bmod 7)=\frac{1}{6}
$$

which is due to $1,2,4$ being squares $\bmod 7$ and $3,5,6$ being nonsquares $\bmod 7$. Examples with exact probabilities $1 / r$!, where $r>3$, have not been found.

Define the logarithmic integral

$$
\operatorname{li}(x)=\int_{2}^{x} \frac{1}{\ln (t)} d t
$$

for $x \geq 2$ and

$$
T_{N}=\#\left\{n \leq N: \pi_{1,0}(n)>\operatorname{li}(n)\right\}
$$

In another demonstration of their methods, Rubinstein \& Sarnak [1] showed that

$$
\lim _{N \rightarrow \infty} \frac{1}{\ln (N)} \sum_{n \in T_{N}} \frac{1}{n}=0.00000026 \ldots=1-0.99999973 \ldots
$$

Further results have been obtained by Ng [4], as reported in [5]; we shall discuss these at a later time.
0.1. Addendum. Let us return to the usual sense of probability (via uniform measure). Brent [6] conjectured that, for random $0<N<n$, we have

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left(\frac{\operatorname{li}(N)-\pi_{1,0}(N)}{\sqrt{N} / \ln (N)}<x\right)=F(x)
$$

where the probability distribution F has mean $\mu=1$ and variance $\sigma^{2} \approx(0.21)^{2}$. If the Riemann hypothesis is true, then it can be shown that [7]

$$
\begin{aligned}
\sigma^{2} & =2-\ln (4 \pi)+\gamma=(0.2149218879 \ldots)^{2} \\
& =0.0461914179 \ldots=2(0.0230957089 \ldots)
\end{aligned}
$$

which we have seen elsewhere $[8,9]$. An open question is whether F is the normal distribution; a density plot [1] and a time series graph [5] suggest that the answer might be yes. We also wonder about extensions of this probabilistic result to $\pi_{q, a}(n)$ for arbitrary a and q.

If, in the definition of $\pi_{q, a}(n)$, the symbol p is understood to encompass semiprimes (products of two primes) rather than primes, then with formulas for S_{N} and P exactly as before $[10,11]$,

$$
P(3>1 \bmod 4)=0.10572 \ldots
$$

Hence the bias for semiprimes is reversed from that of primes, although it is less pronounced. Information on the asymptotics of $\pi_{q, a}(n)$ here would be gratefully received. The terms 2-almost prime or biprime are often encountered; a less common term quasi-prime appears in [10]

References

[1] M. Rubinstein and P. Sarnak, Chebyshev's bias, Experiment. Math. 3 (1994) 173-197; MR1329368 (96d:11099).
[2] S. R. Finch, Quadratic Dirichlet L-series, unpublished note (2005).
[3] A. Feuerverger and G. Martin, Biases in the Shanks-Rényi prime number race, Experiment. Math. 9 (2000) 535-570; MR1806291 (2002d:11111).
[4] N. C. Ng, Limiting Distributions and Zeros of Artin L-functions, Ph.D. thesis, University of British Columbia, 2000.
[5] A. Granville and G. Martin, Prime number races, Amer. Math. Monthly 113 (2006) 1-33; Spanish version in La Gaceta de la Real Sociedad Matematica Espanola 8 (2005) 197-240; MR2158415 (2006f:11114).
[6] R. P. Brent, Irregularities in the distribution of primes and twin primes, Math. Comp. 29 (1975) 43-56; correction 30 (1976) 198; MR0369287 (51 \#5522) and MR0396437 (53 \#302).
[7] R. P. Brent, Comments on "Irregularities...", http://mathspeople.anu.edu.au/ ${ }^{\sim}$ brent/pub/pub024.html.
[8] S. R. Finch, Apéry's constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 40-53.
[9] S. R. Finch, Stieltjes constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 166-171.
[10] K. Ford and J. Sneed, Chebyshev's bias for products of two primes, Experim. Math. 19 (2010) 385-398; arXiv:0908.0093; MR2778652 (2012a:11141).
[11] G. Martin and J. Scarfy, Comparative prime number theory: A survey, arXiv:1202.3408.

[^0]: ${ }^{0}$ Copyright © 2006 by Steven R. Finch. All rights reserved.

