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Let S denote the unit sphere in Euclidean 3-space. A spherical triangle T is a
region enclosed by three great circles on S; a great circle is a circle whose center is
at the origin. The sides of T" are arcs of great circles and have length a, b, c. Each of
these is < 7. The angle o opposite side a is the dihedral angle between the two planes
passing through the origin and determined by arcs b, ¢. The angles 3, v opposite
sides b, ¢ are similarly defined. Each of these is < 7 too [1].

The sum of the angles is < 37 yet > m. In particular, the sum need not be the
constant 7. Define the spherical excess £ = a +  + v — w. The sum of the sides is
> 0 yet < 27. Define the spherical defect D = 27 — (a+ b+ ¢). It can be shown that
the area of T'is E and a calculus-based proof appears in [2]; see also [3]. Clearly the
perimeter of T is 2w — D.

The probability density functions for sides, angles, excess and defect on S will
occupy us in this essay. Random triangles are defined here by selecting three inde-
pendent uniformly distributed points on the sphere to be vertices. One way to do
this is to let Xy, Xy, X3, Y, Yo, Y3, 74, Z5, Z3 be independent normally distributed
random variables with mean 0 and variance 1; then the points

(X17E7ZI) (X27}/2722) (X37}/ESJZ3)
VXIAYP+ 22 X3P+ X3P+ 43

satisfy our requirements. Any spherically-symmetric underlying distribution will do,
in fact, but we shall refer to the normal variables X;, Y}, Z; again at a later time.

0.1. Sides. The trivariate density f(x,y, z) for sides a, b, ¢ is [4]

1 sin(x) sin(y) sin(z)
AT /1 — cos(x)? — cos(y)? — cos(z)? + 2 cos(z) cos(y) cos(z)
fe+y+z2<2mar4+y>z,y+z>xand z+x >y,
0 otherwise.

As a consequence, the univariate density for a is

1
§sin(x), O<z<m
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and

7T2

E(a) = g = 1.5707963267....  B(a®) = 7 — 2 = 2.9348022005....

Sides a, b, ¢ are uncorrelated and, moreover, pairwise independent. They are, however,
mutually dependent, since [5, 6, 7, §]

P(<7Tb<7r <7T>—1 1 1 >1
S90S C55) 7] 7)) 7%

P<a>E
27

and since E(abc) = 3.694... < 73/8.

b>zc>z>—
2’ 2)

0.2. Angles. The trivariate density g(z,y, z) for angles «, 3, v is [4]

cos [FY T2 oo ([ZEFY T2 o (22Y 2 (e (2HY =2
1 2 2 2 2

m sin(z)? sin(y)? sin(z)?
fe+y+z>maort+y<nr+z,y+z<rn+zrandz+z<7m+y,
0 otherwise.

As a consequence, « is uniformly distributed on [0, 7] and

2

E(a) = g — 1.5707963267..., E(a?) = % — 3.8757845850....

Angles «, 3, v are uncorrelated but, unlike before, pairwise dependent. Integrating
out z, the bivariate density for «, [ is

—cos(y) sin(y) +y ifr—y>0andx+y<m,
1 1 7+ cos(y) sin(y) — ifr—y<Oand x4y >m,
%sin(m)%im(y)Q. — cos(z) sin(x )—l—x ifr—y<Oandx+y<m,
7 + cos(x) sin(z) — ifr—y>0ando+y>n

which is not uniform on [0, ] x [0, 7]. The mutual dependence can also be seen from
5, 6,7, 8§
P( <7T5<7T <7r>_1 1 1 -
CEP Ty Te\r T

GogP T 75)T9\1 7

and from E(a 87) = 4.688... > 73/8.



RANDOM TRIANGLES II 3

0.3. Excess and Defect. In this section, we gather several results which seem
to defy easy analysis. A proof that angle « is uncorrelated with either adjacent side
b or ¢ is known, hence E(ab) = 72/4 = E(a c) immediately. The joint moment of o
with its opposite side a is obviously a triple integral:

E(aa) = ﬁ/// sin(x) sin(y)z arccos [cos(x) cos(y) + sin(z) sin(y) cos(z)] dz dy dz

whose exact evaluation seems difficult. Miles [4] proved, via stochastic geometry, that

E(aa) = 72/2 —2 as a special case of a more general theorem. As a consequence, the

correlation coefficient between v and a is
3(n%2 —8)

™

plo, a) = = 0.7538511740....

Recall from [9] that analogous results for Gaussian triangles in the plane remain open.
Clearly

™ 2 7T2
Bla+f+y-m) =5, Ella+ts+y-m))=-,

E(QW—a—b—c):g, B((27 —a—b—c)?) =% —6

however the verification of

2

E((Oz—|—5+7—7r)(27r—a—b—c)):6—%,

3(r2—8)

p(E,D) = — = —0.7538511740...

rests on the aforementioned nontrivial result.
A proposed density h(z) for excess E was published in 1867 [10]:
(22 — 47z + 37% — 6) cos(z) — 6(x — 27) sin(x) — 2(2? — 47z + 372 + 3)
167 cos(x/2)%

for 0 < x < 27 and remained obscure until it was cited in a recent paper [11]. Details
of the supporting geometric proof need to be carefully examined. No analytic proof
using our trivariate density for a, 3, v has yet been found. In some relevant 1928
calculations, Burnside [12] remarked that, “in a similar way”, the probability that
the area of T should lie between = and = + dr “may be determined”. Miles [4]
confessed in 1971 that the functional form of h(z) has “so far eluded the author”,
but then mentioned (in a footnote) work of J. N. Boots evidently leading to h(z). No
additional information is known, nor has anyone conjectured a density formula for
defect D.
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0.4. Proof for (a,b,y). We will demonstrate that a, b, v are independent random
variables; the sides a, b each have the sine density on [0, 7| and the angle 7 is uniformly
distributed on [0, 7]. Our starting point is the fact that a is an angle between two
vectors (X1,Y1,7;) and (X3,Ys, Z3), where X;, Y, Z; were defined earlier, and b
likewise for the vectors (Xs, Ys, Z2) and (X3, Y3, Z3). The formulas [13, 14, 15]

XX+ Y+ 4%
cos(a) = ,  cos(b)
VXPH YR+ 23/ X2 +Y?+ 72

B Xo X3+ YoYs + 2575
VX3 Y2+ 22 /X2 + Y2+ 72

are familiar: cos(a) is the sample correlation coefficient r13 between two samples of
size three (each sample coming from a population of known mean = 0) and cos(b) is
likewise the sample correlation coefficient ry3. Also, by the Law of Cosines for Sides:

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(7)

we obtain
_cos(c) — cos(a) cos(b) T12 — T13T93

cos(y) = - . =
) sin(a) sin(b) V1—15/1— 713
and recognize this as the sample partial correlation coefficient 5.5 between samples
1 and 2, holding variable 3 fixed. An exercise in [16] states that ri3, 723, T12.3 are
independent because X;, Y;, Z;, are independent and normally distributed. Hence a,
b, v are independent as well.

The sample correlation coefficient ry3 is uniformly distributed on [—1,1], as a
special case of results given in [17, 18, 19, 20], hence

Pla<€) = Plcos(a) > cos(€)) = P (ris > cos(€)) = = / an

1 — cos(§)
2

and dP (a < &) /d¢ = sin(€)/2. The sample partial correlation coefficient ry5.3 has
the arcsine distribution on [—1, 1], hence

1

d
P(y <€) = P(cos(y) > cos(€)) = P (rias > cos(€)) = % / %ng
cos(€)
= % - %arcsin(cos(g)) = %g

and dP (v < &) /d§ = 1/m, as was to be shown.
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Geisser & Mantel [21] were the first to notice that the correlations ri3, 723, 712
are pairwise but not mutually independent (for samples of arbitrary size). This
“natural” example has been justly celebrated and is of “valuable pedagogical use”
[22]. Recasting the example in terms of spherical triangle sides a, b, ¢ makes it even
more remarkable, in our opinion. No one seems to have linked Miles’ paper [4] in
geometric probability to ongoing research in theoretical statistics.

0.5. Proof for (a,5,v). We bring 3 into the trivariate density sin(a) sin(b)/(4),
removing b. From the Law of Cosines for Angles:

—cos(a) = cos(f) cos(y) — sin(f) sin(7y) cos(a)
we have
sin(a)® = (1-— (:08(@)2)3/2
= (1 — (cos(B) cos(v) — sin(f) sin(7) cos(a))?)

since 0 < a < 7. Differentiating the identity [1, 4]

3/2

sin(a) cot(b) = cot () sin(y) + cos(7y) cos(a)
with respect to b, we obtain
—sin(a) csc(b)?db = — csc(B3)? sin(v)dS
hence
g — sin(b)? sin(7)
~ sin(a) sin(3)2

Via the Law of Sines:
sin(a)  sin(b)  sin(c)

sin(a)  sin(B)  sin(y)

the density sin(a) sin(b)/(47) becomes
L sin(a sin(b)® sin(y) = 1 sin(h)’ sin(/3) sin
ar sin(a) sin(f)? 47 sin(3)3 (B) sin(v)
1 sin(a)® | )
~ o si()sin()
1 sin(3) sin(7) sin(a)?

47 (1 — (cos(B) cos(y) — sin(B) sin(y) cos(a))?)”*

More elaborate arguments lead to the trivariate densities of (a, b, ¢) and («, 5,7).
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This preceding expression is helpful for computing the bivariate density of (3, 7).
Integrating out a gives

|sin(8 — )| cos(B + ) — | sin(B + )| cos(8 — 7) + arcsin(cos( — 7)) — arcsin(cos(S + 7))
A7 sin(/5)? sin(7y)?

which seems complicated at first glance. Everything simplifies if we partition the
square [0, 7] x [0, 7] into four isosceles right triangles according to the diagonal lines
B —~=0,3+~vy=mn. For example, if 3 —~v > 0 and 5 + v < 7, then the numerator
becomes —2 cos(y) sin(y) + 2. As another example, if 3 —~ < 0 and S+ > 7, then
the numerator becomes 27 + 2 cos(7y) sin(y) — 2. For the remaining two triangles, =
is merely replaced by 3, by symmetry. Such formulas can be used to confirm directly
that 3, v are each uniformly distributed on [0, 7] and E(8v) = 72/4.

A joint density for (a, ) might assist in evaluating the triple integral mentioned
earlier, but finding this (and the joint density of (r13,7132)) seems to be hard.

0.6. Addendum. Jones & Benyon-Tinker [23] expressed the perimeter density in
terms of elliptic integrals [9]:

| /E (sin (5)) — cos (551) K (sin (5))

47T0 \/cos (%)2 — cos (%‘75)2

which contrasts with the 1867 area density (for which an elementary formula is avail-
able). Finch & Jones [24] found that the perimeter density has value 31/2/32 at
x = m, and also revisited the proof of the area density formula (valid at all x).

Miles’ [4] proof that E(aa) = 72/2 — 2 is clarified in [25]. Let ,F, denote the
generalized hypergeometric function and G denote Catalan’s constant [26]. It is
interesting that the conditional moment

E(aa|b = 7/2) = 3.0538319164...

-1 0/ {2 -2 [CO;S)QE (cos (s)) + (1 - 00515)2) K(cos(s))} cos(s)} sds
3
2

remains complicated whereas

E(aal|B=r/2) = 2.8708787614... = % 2+ (1+1In(2)) 7 — 4G]

is simple.
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Any spherical triangle T' determines a unique chordal triangle 7" (with sides as

straight lines through the interior of S) and vice versa. Let ' denote the radius of
the unique circle passing through the three vertices of 7”. The density of two T’
angles is given in [27], as well as the trivariate density of two 7" sides coupled with

r.

Such results lead to progress in answering an open question: What is the exact

probability that four random circular caps of angular radius 88° completely cover S7
The progress is, however, insignificant if 88° is replaced by, say, 71°. We hope to see
resolution of this issue someday.
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