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Let  denote the unit sphere in Euclidean 3-space. A spherical triangle  is a

region enclosed by three great circles on ; a great circle is a circle whose center is

at the origin. The sides of  are arcs of great circles and have length , , . Each of

these is ≤ . The angle  opposite side  is the dihedral angle between the two planes

passing through the origin and determined by arcs , . The angles ,  opposite

sides ,  are similarly defined. Each of these is ≤  too [1].

The sum of the angles is ≤ 3 yet ≥ . In particular, the sum need not be the

constant . Define the spherical excess  =  +  +  − . The sum of the sides is

≥ 0 yet ≤ 2. Define the spherical defect  = 2− (+ + ). It can be shown that

the area of  is  and a calculus-based proof appears in [2]; see also [3]. Clearly the

perimeter of  is 2 −.

The probability density functions for sides, angles, excess and defect on  will

occupy us in this essay. Random triangles are defined here by selecting three inde-

pendent uniformly distributed points on the sphere to be vertices. One way to do

this is to let 1, 2, 3, 1, 2, 3, 1, 2, 3 be independent normally distributed

random variables with mean 0 and variance 1; then the points
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satisfy our requirements. Any spherically-symmetric underlying distribution will do,

in fact, but we shall refer to the normal variables , ,  again at a later time.

0.1. Sides. The trivariate density (  ) for sides , ,  is [4]⎧⎪⎪⎨⎪⎪⎩
1
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1− cos()2 − cos()2 − cos()2 + 2 cos() cos() cos()

if +  +   2, +   ,  +    and  +   

0 otherwise.

As a consequence, the univariate density for  is
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and

E() =


2
= 15707963267 E(2) =

2

2
− 2 = 29348022005

Sides , ,  are uncorrelated and, moreover, pairwise independent. They are, however,

mutually dependent, since [5, 6, 7, 8]
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and since E(  ) = 3694  38.

0.2. Angles. The trivariate density (  ) for angles , ,  is [4]⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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if +  +   , +    + ,  +    +  and  +    + 

0 otherwise.

As a consequence,  is uniformly distributed on [0 ] and

E() =


2
= 15707963267 E(2) =

2

3
= 38757845850

Angles , ,  are uncorrelated but, unlike before, pairwise dependent. Integrating

out , the bivariate density for ,  is

1

2

1

sin()2 sin()2
·

⎧⎪⎪⎨⎪⎪⎩
− cos() sin() +  if −   0 and +   ,

 + cos() sin()−  if −   0 and +   ,

− cos() sin() +  if −   0 and +   ,

 + cos() sin()−  if −   0 and +   

which is not uniform on [0 ]× [0 ]. The mutual dependence can also be seen from
[5, 6, 7, 8]
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and from E( ) = 4688  38.
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0.3. Excess and Defect. In this section, we gather several results which seem

to defy easy analysis. A proof that angle  is uncorrelated with either adjacent side

 or  is known, hence E( ) = 24 = E( ) immediately. The joint moment of 

with its opposite side  is obviously a triple integral:

E() =
1

4

Z
0

Z
0

Z
0

sin() sin() arccos [cos() cos() + sin() sin() cos()]   

whose exact evaluation seems difficult. Miles [4] proved, via stochastic geometry, that

E() = 22−2 as a special case of a more general theorem. As a consequence, the
correlation coefficient between  and  is

( ) =

p
3(2 − 8)


= 07538511740

Recall from [9] that analogous results for Gaussian triangles in the plane remain open.

Clearly

E(+  +  − ) =


2
 E((+  +  − )2) =

2

2


E(2 − − − ) =


2
 E((2 − − − )2) = 2 − 6

however the verification of

E((+  +  − )(2 − − − )) = 6− 2

2


() = −
p
3(2 − 8)


= −07538511740

rests on the aforementioned nontrivial result.

A proposed density () for excess  was published in 1867 [10]:

−(
2 − 4+ 32 − 6) cos()− 6(− 2) sin()− 2(2 − 4+ 32 + 3)

16 cos(2)4

for 0    2 and remained obscure until it was cited in a recent paper [11]. Details

of the supporting geometric proof need to be carefully examined. No analytic proof

using our trivariate density for , ,  has yet been found. In some relevant 1928

calculations, Burnside [12] remarked that, “in a similar way”, the probability that

the area of  should lie between  and  +  “may be determined”. Miles [4]

confessed in 1971 that the functional form of () has “so far eluded the author”,

but then mentioned (in a footnote) work of J. N. Boots evidently leading to (). No

additional information is known, nor has anyone conjectured a density formula for

defect .
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0.4. Proof for (  ). We will demonstrate that , ,  are independent random

variables; the sides ,  each have the sine density on [0 ] and the angle  is uniformly

distributed on [0 ]. Our starting point is the fact that  is an angle between two

vectors (1 1 1) and (3 3 3), where , ,  were defined earlier, and 

likewise for the vectors (2 2 2) and (3 3 3). The formulas [13, 14, 15]

cos() =
13 + 13 + 13p

2
1 +  2

1 + 21
p
2
3 +  2

3 + 23
 cos() =

23 + 23 + 23p
2
2 +  2

2 + 22
p
2
3 +  2

3 + 23

are familiar: cos() is the sample correlation coefficient 13 between two samples of

size three (each sample coming from a population of known mean = 0) and cos() is

likewise the sample correlation coefficient 23. Also, by the Law of Cosines for Sides:

cos() = cos() cos() + sin() sin() cos()

we obtain

cos() =
cos()− cos() cos()

sin() sin()
=

12 − 1323p
1− 213

p
1− 223

and recognize this as the sample partial correlation coefficient 12·3 between samples
1 and 2, holding variable 3 fixed. An exercise in [16] states that 13, 23, 12·3 are
independent because , ,  are independent and normally distributed. Hence ,

,  are independent as well.

The sample correlation coefficient 13 is uniformly distributed on [−1 1], as a
special case of results given in [17, 18, 19, 20], hence

P (  ) = P (cos()  cos()) = P (13  cos()) =
1

2

1Z
cos()



=
1− cos()

2

and P (  )  = sin()2. The sample partial correlation coefficient 12·3 has
the arcsine distribution on [−1 1], hence

P (  ) = P (cos()  cos()) = P (12·3  cos()) =
1



1Z
cos()

p
1− 2

=
1

2
− 1


arcsin(cos()) =

1




and P (  )  = 1, as was to be shown.
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Geisser & Mantel [21] were the first to notice that the correlations 13, 23, 12
are pairwise but not mutually independent (for samples of arbitrary size). This

“natural” example has been justly celebrated and is of “valuable pedagogical use”

[22]. Recasting the example in terms of spherical triangle sides , ,  makes it even

more remarkable, in our opinion. No one seems to have linked Miles’ paper [4] in

geometric probability to ongoing research in theoretical statistics.

0.5. Proof for (  ). We bring  into the trivariate density sin() sin()(4),

removing . From the Law of Cosines for Angles:

− cos() = cos() cos()− sin() sin() cos()

we have

sin()3 =
¡
1− cos()2¢32

=
¡
1− (cos() cos()− sin() sin() cos())2¢32

since 0    . Differentiating the identity [1, 4]

sin() cot() = cot() sin() + cos() cos()

with respect to , we obtain

− sin() csc()2 = − csc()2 sin()

hence

 =
sin()2 sin()

sin() sin()2


Via the Law of Sines:
sin()

sin()
=
sin()

sin()
=
sin()

sin()

the density sin() sin()(4) becomes

1

4
sin()

sin()3 sin()

sin() sin()2
=

1

4

sin()3

sin()3
sin() sin()

=
1

4

sin()3

sin()3
sin() sin()

=
1

4

sin() sin() sin()3

(1− (cos() cos()− sin() sin() cos())2)32


More elaborate arguments lead to the trivariate densities of (  ) and (  ).
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This preceding expression is helpful for computing the bivariate density of ( ).

Integrating out  gives

| sin( − )| cos( + )− | sin( + )| cos( − ) + arcsin(cos( − ))− arcsin(cos( + ))

4 sin()2 sin()2

which seems complicated at first glance. Everything simplifies if we partition the

square [0 ]× [0 ] into four isosceles right triangles according to the diagonal lines
 −  = 0,  +  = . For example, if  −   0 and  +   , then the numerator

becomes −2 cos() sin()+2. As another example, if −  0 and +  , then

the numerator becomes 2 + 2 cos() sin()− 2. For the remaining two triangles, 
is merely replaced by , by symmetry. Such formulas can be used to confirm directly

that ,  are each uniformly distributed on [0 ] and E( ) = 24.

A joint density for ( ) might assist in evaluating the triple integral mentioned

earlier, but finding this (and the joint density of (13 132)) seems to be hard.

0.6. Addendum. Jones & Benyon-Tinker [23] expressed the perimeter density in

terms of elliptic integrals [9]:

1

4

2Z
0


¡
sin
¡

2

¢¢− cos ¡−
2

¢2

¡
sin
¡

2

¢¢q
cos
¡

2

¢2 − cos ¡−
2

¢2 sin() 

which contrasts with the 1867 area density (for which an elementary formula is avail-

able). Finch & Jones [24] found that the perimeter density has value 3
√
232 at

 = , and also revisited the proof of the area density formula (valid at all ).

Miles’ [4] proof that E() = 22 − 2 is clarified in [25]. Let  denote the

generalized hypergeometric function and  denote Catalan’s constant [26]. It is

interesting that the conditional moment

E( |  = 2) = 30538319164

=
1

4
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remains complicated whereas

E( | = 2) = 28708787614 =


4
[2 + (1 + ln(2)) − 4]

is simple.
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Any spherical triangle  determines a unique chordal triangle  0 (with sides as
straight lines through the interior of ) and vice versa. Let 0 denote the radius of
the unique circle passing through the three vertices of  0. The density of two  0

angles is given in [27], as well as the trivariate density of two  0 sides coupled with
0. Such results lead to progress in answering an open question: What is the exact

probability that four random circular caps of angular radius 88◦ completely cover ?
The progress is, however, insignificant if 88◦ is replaced by, say, 71◦. We hope to see
resolution of this issue someday.
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