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Let  denote the unit sphere in Euclidean 3-space. A spherical triangle  is a

region enclosed by three great circles on ; a great circle is a circle whose center is

at the origin. The sides of  are arcs of great circles and have length , , . Each of

these is ≤ . The angle  opposite side  is the dihedral angle between the two planes

passing through the origin and determined by arcs , . The angles ,  opposite

sides ,  are similarly defined. Each of these is ≤  too [1].

The sum of the angles is ≤ 3 yet ≥ . In particular, the sum need not be the

constant . Define the spherical excess  =  +  +  − . The sum of the sides is

≥ 0 yet ≤ 2. Define the spherical defect  = 2− (+ + ). It can be shown that

the area of  is  and a calculus-based proof appears in [2]; see also [3]. Clearly the

perimeter of  is 2 −.

The probability density functions for sides, angles, excess and defect on  will

occupy us in this essay. Random triangles are defined here by selecting three inde-

pendent uniformly distributed points on the sphere to be vertices. One way to do

this is to let 1, 2, 3, 1, 2, 3, 1, 2, 3 be independent normally distributed

random variables with mean 0 and variance 1; then the points

(1 1 1)p
2
1 +  2

1 + 21


(2 2 2)p
2
2 +  2

2 + 22


(3 3 3)p
2
3 +  2

3 + 23

satisfy our requirements. Any spherically-symmetric underlying distribution will do,

in fact, but we shall refer to the normal variables , ,  again at a later time.

0.1. Sides. The trivariate density (  ) for sides , ,  is [4]⎧⎪⎪⎨⎪⎪⎩
1

4

sin() sin() sin()p
1− cos()2 − cos()2 − cos()2 + 2 cos() cos() cos()

if +  +   2, +   ,  +    and  +   

0 otherwise.

As a consequence, the univariate density for  is

1

2
sin() 0    
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and

E() =


2
= 15707963267 E(2) =

2

2
− 2 = 29348022005

Sides , ,  are uncorrelated and, moreover, pairwise independent. They are, however,

mutually dependent, since [5, 6, 7, 8]

P
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 



2
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

2
  



2

´
=
1

4

µ
1− 1



¶

1

8


P

³
 
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2
  



2
  



2

´
=
1

4

1

8

and since E(  ) = 3694  38.

0.2. Angles. The trivariate density (  ) for angles , ,  is [4]⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1


cos

µ
+  + 

2

¶
cos

µ−+  + 

2

¶
cos

µ
−  + 

2

¶
cos

µ
+  − 

2

¶
sin()2 sin()2 sin()2

if +  +   , +    + ,  +    +  and  +    + 

0 otherwise.

As a consequence,  is uniformly distributed on [0 ] and

E() =


2
= 15707963267 E(2) =

2

3
= 38757845850

Angles , ,  are uncorrelated but, unlike before, pairwise dependent. Integrating

out , the bivariate density for ,  is

1

2

1

sin()2 sin()2
·

⎧⎪⎪⎨⎪⎪⎩
− cos() sin() +  if −   0 and +   ,

 + cos() sin()−  if −   0 and +   ,

− cos() sin() +  if −   0 and +   ,

 + cos() sin()−  if −   0 and +   

which is not uniform on [0 ]× [0 ]. The mutual dependence can also be seen from
[5, 6, 7, 8]
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and from E( ) = 4688  38.
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0.3. Excess and Defect. In this section, we gather several results which seem

to defy easy analysis. A proof that angle  is uncorrelated with either adjacent side

 or  is known, hence E( ) = 24 = E( ) immediately. The joint moment of 

with its opposite side  is obviously a triple integral:

E() =
1

4

Z
0

Z
0

Z
0

sin() sin() arccos [cos() cos() + sin() sin() cos()]   

whose exact evaluation seems difficult. Miles [4] proved, via stochastic geometry, that

E() = 22−2 as a special case of a more general theorem. As a consequence, the
correlation coefficient between  and  is

( ) =

p
3(2 − 8)


= 07538511740

Recall from [9] that analogous results for Gaussian triangles in the plane remain open.

Clearly

E(+  +  − ) =


2
 E((+  +  − )2) =

2

2


E(2 − − − ) =


2
 E((2 − − − )2) = 2 − 6

however the verification of

E((+  +  − )(2 − − − )) = 6− 2

2


() = −
p
3(2 − 8)


= −07538511740

rests on the aforementioned nontrivial result.

A proposed density () for excess  was published in 1867 [10]:

−(
2 − 4+ 32 − 6) cos()− 6(− 2) sin()− 2(2 − 4+ 32 + 3)

16 cos(2)4

for 0    2 and remained obscure until it was cited in a recent paper [11]. Details

of the supporting geometric proof need to be carefully examined. No analytic proof

using our trivariate density for , ,  has yet been found. In some relevant 1928

calculations, Burnside [12] remarked that, “in a similar way”, the probability that

the area of  should lie between  and  +  “may be determined”. Miles [4]

confessed in 1971 that the functional form of () has “so far eluded the author”,

but then mentioned (in a footnote) work of J. N. Boots evidently leading to (). No

additional information is known, nor has anyone conjectured a density formula for

defect .
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0.4. Proof for (  ). We will demonstrate that , ,  are independent random

variables; the sides ,  each have the sine density on [0 ] and the angle  is uniformly

distributed on [0 ]. Our starting point is the fact that  is an angle between two

vectors (1 1 1) and (3 3 3), where , ,  were defined earlier, and 

likewise for the vectors (2 2 2) and (3 3 3). The formulas [13, 14, 15]

cos() =
13 + 13 + 13p

2
1 +  2

1 + 21
p
2
3 +  2

3 + 23
 cos() =

23 + 23 + 23p
2
2 +  2

2 + 22
p
2
3 +  2

3 + 23

are familiar: cos() is the sample correlation coefficient 13 between two samples of

size three (each sample coming from a population of known mean = 0) and cos() is

likewise the sample correlation coefficient 23. Also, by the Law of Cosines for Sides:

cos() = cos() cos() + sin() sin() cos()

we obtain

cos() =
cos()− cos() cos()

sin() sin()
=

12 − 1323p
1− 213

p
1− 223

and recognize this as the sample partial correlation coefficient 12·3 between samples
1 and 2, holding variable 3 fixed. An exercise in [16] states that 13, 23, 12·3 are
independent because , ,  are independent and normally distributed. Hence ,

,  are independent as well.

The sample correlation coefficient 13 is uniformly distributed on [−1 1], as a
special case of results given in [17, 18, 19, 20], hence

P (  ) = P (cos()  cos()) = P (13  cos()) =
1

2

1Z
cos()



=
1− cos()

2

and P (  )  = sin()2. The sample partial correlation coefficient 12·3 has
the arcsine distribution on [−1 1], hence

P (  ) = P (cos()  cos()) = P (12·3  cos()) =
1



1Z
cos()

p
1− 2

=
1

2
− 1


arcsin(cos()) =

1




and P (  )  = 1, as was to be shown.
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Geisser & Mantel [21] were the first to notice that the correlations 13, 23, 12
are pairwise but not mutually independent (for samples of arbitrary size). This

“natural” example has been justly celebrated and is of “valuable pedagogical use”

[22]. Recasting the example in terms of spherical triangle sides , ,  makes it even

more remarkable, in our opinion. No one seems to have linked Miles’ paper [4] in

geometric probability to ongoing research in theoretical statistics.

0.5. Proof for (  ). We bring  into the trivariate density sin() sin()(4),

removing . From the Law of Cosines for Angles:

− cos() = cos() cos()− sin() sin() cos()

we have

sin()3 =
¡
1− cos()2¢32

=
¡
1− (cos() cos()− sin() sin() cos())2¢32

since 0    . Differentiating the identity [1, 4]

sin() cot() = cot() sin() + cos() cos()

with respect to , we obtain

− sin() csc()2 = − csc()2 sin()

hence

 =
sin()2 sin()

sin() sin()2


Via the Law of Sines:
sin()

sin()
=
sin()

sin()
=
sin()

sin()

the density sin() sin()(4) becomes

1

4
sin()

sin()3 sin()

sin() sin()2
=

1

4

sin()3

sin()3
sin() sin()

=
1

4

sin()3

sin()3
sin() sin()

=
1

4

sin() sin() sin()3

(1− (cos() cos()− sin() sin() cos())2)32


More elaborate arguments lead to the trivariate densities of (  ) and (  ).



Random Triangles II 6

This preceding expression is helpful for computing the bivariate density of ( ).

Integrating out  gives

| sin( − )| cos( + )− | sin( + )| cos( − ) + arcsin(cos( − ))− arcsin(cos( + ))

4 sin()2 sin()2

which seems complicated at first glance. Everything simplifies if we partition the

square [0 ]× [0 ] into four isosceles right triangles according to the diagonal lines
 −  = 0,  +  = . For example, if  −   0 and  +   , then the numerator

becomes −2 cos() sin()+2. As another example, if −  0 and +  , then

the numerator becomes 2 + 2 cos() sin()− 2. For the remaining two triangles, 
is merely replaced by , by symmetry. Such formulas can be used to confirm directly

that ,  are each uniformly distributed on [0 ] and E( ) = 24.

A joint density for ( ) might assist in evaluating the triple integral mentioned

earlier, but finding this (and the joint density of (13 132)) seems to be hard.

0.6. Addendum. Jones & Benyon-Tinker [23] expressed the perimeter density in

terms of elliptic integrals [9]:

1

4

2Z
0


¡
sin
¡

2

¢¢− cos ¡−
2

¢2

¡
sin
¡

2

¢¢q
cos
¡

2

¢2 − cos ¡−
2

¢2 sin() 

which contrasts with the 1867 area density (for which an elementary formula is avail-

able). Finch & Jones [24] found that the perimeter density has value 3
√
232 at

 = , and also revisited the proof of the area density formula (valid at all ).

Miles’ [4] proof that E() = 22 − 2 is clarified in [25]. Let  denote the

generalized hypergeometric function and  denote Catalan’s constant [26]. It is

interesting that the conditional moment

E( |  = 2) = 30538319164

=
1

4

Z
0

½
2− 4



∙
1

cos()2
 (cos ()) +

µ
1− 1

cos()2

¶
 (cos ())

¸
cos()

¾
 

=
2

2
− 4


− 2


43

µ
1

2

1

2
 1 1;

3

2

3

2

3

2
; 1

¶
remains complicated whereas

E( | = 2) = 28708787614 =


4
[2 + (1 + ln(2)) − 4]

is simple.
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Any spherical triangle  determines a unique chordal triangle  0 (with sides as
straight lines through the interior of ) and vice versa. Let 0 denote the radius of
the unique circle passing through the three vertices of  0. The density of two  0

angles is given in [27], as well as the trivariate density of two  0 sides coupled with
0. Such results lead to progress in answering an open question: What is the exact

probability that four random circular caps of angular radius 88◦ completely cover ?
The progress is, however, insignificant if 88◦ is replaced by, say, 71◦. We hope to see
resolution of this issue someday.
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