Random Triangles III

Steven Finch

April 30, 2010
Let Ω be a compact convex set in Euclidean n-space with nonempty interior. Random triangles are defined here by selecting three independent uniformly distributed points in Ω to be vertices. Generating such points for $(n, \Omega)=$ (2, unit square) or $(n, \Omega)=(3$, unit cube $)$ is straightforward. For $(n, \Omega)=(2$, unit disk $)$ or $(n, \Omega)=\left(3\right.$, unit ball), we use the following result [1]. Let $X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}$, Z_{1}, Z_{2}, Z_{3} be independent normally distributed random variables with mean 0 and variance $1 / 2$. Let W_{1}, W_{2}, W_{3} be exponential random variables, independent of the others, with mean 1. Then the points

$$
\frac{\left(X_{1}, Y_{1}\right)}{\sqrt{X_{1}^{2}+Y_{1}^{2}+W_{1}}}, \quad \frac{\left(X_{2}, Y_{2}\right)}{\sqrt{X_{2}^{2}+Y_{2}^{2}+W_{2}}}, \quad \frac{\left(X_{3}, Y_{3}\right)}{\sqrt{X_{3}^{2}+Y_{3}^{2}+W_{3}}}
$$

are uniform in the disk, and the points

$$
\frac{\left(X_{1}, Y_{1}, Z_{1}\right)}{\sqrt{X_{1}^{2}+Y_{1}^{2}+Z_{1}^{2}+W_{1}}}, \quad \frac{\left(X_{2}, Y_{2}, Z_{2}\right)}{\sqrt{X_{2}^{2}+Y_{2}^{2}+Z_{2}^{2}+W_{2}}}, \quad \frac{\left(X_{3}, Y_{3}, Z_{3}\right)}{\sqrt{X_{3}^{2}+Y_{3}^{2}+Z_{3}^{2}+W_{3}}}
$$

are uniform in the ball. Compared with the intricate joint distributions of sides and angles for Gaussian triangles [2] and for spherical triangles [3], little is known for uniform triangles in Ω.
0.1. Disk. The density $f(x)$ for an arbitrary side a of a random uniform triangle in the unit disk is $[4,5,6,7,8,9,10,11]$

$$
\frac{4 x}{\pi} \arccos \left(\frac{x}{2}\right)-\frac{x^{2}}{\pi} \sqrt{4-x^{2}}, \quad 0<x<2
$$

and

$$
\mathrm{E}(a)=\frac{128}{45 \pi}=0.9054147873 \ldots, \quad \mathrm{E}\left(a^{2}\right)=1
$$

No one has attempted to extend this univariate result to a bivariate or trivariate density, as far as is known.

[^0]The density $g(x)$ for an arbitrary angle α is [12, 13]
$\frac{\cos (5 x)-\left(1-12 \pi x+12 x^{2}\right) \cos (x)}{12 \pi^{2} \sin (x)^{3}}-\frac{(\pi-x) \cos (4 x)+10(\pi-x) \cos (2 x)+(\pi-13 x)}{12 \pi^{2} \sin (x)^{2}}$
when $0<x<\pi$ and

$$
\mathrm{E}(\alpha)=\frac{\pi}{3}=1.0471975511 \ldots, \quad \mathrm{E}\left(\alpha^{2}\right)=\frac{\pi^{2}}{6}+\frac{1}{12}=1.7282674001 \ldots
$$

We can also give partial results for the maximum angle (analogous to the Gaussian case [2]). Corresponding to the density of $\max \{\alpha, \beta, \gamma\}$, the expression $3 g(x)$ holds when $\pi / 2<x<\pi$; an expression when $\pi / 3<x<\pi / 2$ remains open, although a numerical approach is employed in [14]. It can also be shown that [15, 16, 17]

$$
\mathrm{P}(\text { a uniform triangle in the disk is acute })=\frac{4}{\pi^{2}}-\frac{1}{8}=0.2802847345 \ldots
$$

Moments of area are known $[18,19,20,21,22,23,24,25]$:

$$
\begin{gathered}
\mathrm{E}(\text { area })=\frac{35}{48 \pi}=0.2321009586 \ldots=(0.0738800297 \ldots) \pi \\
\mathrm{E}\left(\mathrm{area}^{2}\right)=\frac{3}{32}=0.09375
\end{gathered}
$$

but only a complicated integral representation [22] is available for the density $h(x)$ of area. Conceivably the integrals might someday be evaluated in closed-form. It can be shown that $\lim _{x \rightarrow 0^{+}} h(x)=12 / \pi$ and $\lim _{x \rightarrow 3 \sqrt{3} / 4^{-}} h(x)=0$; it seems that $h(x)$ is strictly decreasing (but a proof is lacking). We do not even have an expression for the second moment of perimeter.
0.2. Ball. The density $f(x)$ for an arbitrary side a of a random uniform triangle in the unit ball is $[6,10,11]$

$$
\frac{3}{16} x^{5}-\frac{9}{4} x^{3}+3 x^{2}, \quad 0<x<2
$$

and

$$
\mathrm{E}(a)=\frac{36}{35}=1.0285714285 \ldots, \quad \mathrm{E}\left(a^{2}\right)=\frac{6}{5}=1.2
$$

A recent extraordinary calculation [26,27] gives a trivariate density for the sides (a, b, c). For reasons of space, we report only the bivariate density $f(x, y)$ for (a, b) :

$$
f(x, y)= \begin{cases}\varphi(x, y) & \text { if } x+y \leq 2 \\ \psi(x, y) & \text { if } x+y>2 \text { and } x \leq 2\end{cases}
$$

when $0 \leq y \leq x$ (use symmetry otherwise) where

$$
\begin{aligned}
& \varphi(x, y)=\frac{9}{16} x^{5} y^{2}-\frac{27}{4} x^{3} y^{2}+\frac{27}{16} x^{3} y^{3}+\frac{9}{16} x^{3} y^{4}+9 x^{2} y^{2}-\frac{27}{8} x^{2} y^{3}+\frac{9}{32} x^{2} y^{5}-\frac{9}{8} x y^{4}+\frac{9}{160} x y^{6} \\
& \psi(x, y)=-\frac{9}{160} x^{6} y+\frac{9}{32} x^{5} y^{2}+\frac{9}{8} x^{4} y-\frac{9}{16} x^{4} y^{3}-\frac{9}{4} x^{3} y-\frac{27}{8} x^{3} y^{2}+\frac{27}{16} x^{3} y^{3}+\frac{9}{2} x^{2} y^{2}+\frac{9}{5} x y-\frac{9}{4} x y^{3} .
\end{aligned}
$$

It follows that

$$
\mathrm{E}(a b)=\frac{884}{825}=1.0715 \ldots, \quad \rho(a, b)=\frac{884 / 825-(36 / 35)^{2}}{6 / 5-(36 / 35)^{2}}=\frac{274}{2871}=0.0954 \ldots
$$

and the cross-correlation coefficient is somewhat smaller than that found in the Gaussian case [2].

With regard to angles, apart from $\mathrm{E}(\alpha)=\pi / 3$, all we know is that $[16,17]$

$$
\mathrm{P}(\text { a uniform triangle in the ball is acute })=\frac{33}{70}=0.4714285714 \ldots
$$

We also have [28]

$$
\begin{gathered}
\mathrm{E}(\text { area })=\frac{9 \pi}{77}=0.3671991413 \ldots \\
\mathrm{E}(\text { perimeter })=\frac{108}{35}, \quad \mathrm{E}\left(\text { perimeter }^{2}\right)=\frac{2758}{275}
\end{gathered}
$$

Evaluating $\mathrm{E}\left(\mathrm{area}^{2}\right)$ remains open; it is surprising that $\mathrm{E}\left(\right.$ perimeter $\left.^{2}\right)$ is presently known in three dimensions but not in two dimensions.
0.3. Square. The density $f(x)$ for an arbitrary side a of a random uniform triangle in the unit square is [10, 29]

$$
\begin{cases}2 x^{3}-8 x^{2}+2 \pi x & \text { if } 0 \leq x \leq 1 \\ 8 x \sqrt{x^{2}-1}-2 x^{3}+2(\pi-2) x-8 x \arctan \left(\sqrt{x^{2}-1}\right) & \text { if } 1<x \leq \sqrt{2}\end{cases}
$$

and

$$
\mathrm{E}(a)=\frac{1}{15}(2+\sqrt{2}+5 \ln (1+\sqrt{2}))=0.5214054331 \ldots, \quad \mathrm{E}\left(a^{2}\right)=\frac{1}{3} .
$$

Nothing comparable is known for an arbitrary angle α; we have only $[30,31]$

$$
\begin{aligned}
\mathrm{P}(\text { a uniform triangle in the square is acute }) & =1-\left(\frac{97}{150}+\frac{\pi}{40}\right) \\
& =1-0.7252064830 \ldots \\
& =0.2747935169 \ldots
\end{aligned}
$$

A remarkable formula holds for the density $h(x)$ for area $[22,32,33,34,35]$:

$$
\begin{aligned}
& \left(-16 \pi^{2} x^{2}-16 \pi^{2} x-24 x+12\right)+\left(240 x^{2}-96 x-12\right) \ln (1-2 x) \\
& -240 x^{2} \ln (2 x)+48 x^{2} \ln (2 x)^{2}+\left(96 x^{2}+96 x\right) \operatorname{Li}_{2}(2 x)
\end{aligned}
$$

where $\operatorname{Li}_{2}(\xi)$ is the dilogarithm function [2]. As a consequence,

$$
\mathrm{E}(\text { area })=\frac{11}{144}, \quad \mathrm{E}\left(\mathrm{area}^{2}\right)=\frac{1}{96} .
$$

Evaluating E(perimeter ${ }^{2}$) remains open.
0.4. Cube. The density $f(x)$ for an arbitrary side a of a random uniform triangle in the unit cube is $[36,37,38]$

$$
\begin{cases}-x^{5}+8 x^{4}-6 \pi x^{3}+4 \pi x^{2} & \text { if } 0 \leq x \leq 1 \\ -8 x\left(2 x^{2}+1\right) \sqrt{x^{2}-1}+2 x^{5}+6 x^{3}-8 \pi x^{2} & \text { if } 1<x \leq \sqrt{2} \\ +(6 \pi-1) x+24 x^{3} \arctan \left(\sqrt{x^{2}-1}\right) & \\ & \text { if } \sqrt{2}<x \leq \sqrt{3}\end{cases}
$$

and

$$
\begin{gathered}
\mathrm{E}(a)=\frac{1}{105}(4+17 \sqrt{2}-6 \sqrt{3}+21 \ln (1+\sqrt{2})+42 \ln (2+\sqrt{3})-7 \pi)=0.6617071822 \ldots \\
\mathrm{E}\left(a^{2}\right)=\frac{1}{2}
\end{gathered}
$$

Essentially nothing else is known: it would be good someday to learn more about the associated acuteness probability and E (area). See [39] for experimental confirmations of the preceding; see [40] for related discussion.
0.5. Addendum. Mathai [41] expressed the area densities for both disk and ball in terms of the generalized hypergeometric function
${ }_{p} F_{q}\left(a_{1}, a_{2}, \ldots, a_{p} ; b_{1}, b_{2}, \ldots, b_{q} ; z\right)=\frac{\Gamma\left(b_{1}\right) \Gamma\left(b_{2}\right) \cdots \Gamma\left(b_{q}\right)}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right) \cdots \Gamma\left(a_{p}\right)} \sum_{k=0}^{\infty} \frac{\Gamma\left(a_{1}+k\right) \Gamma\left(a_{2}+k\right) \cdots \Gamma\left(a_{p}+k\right)}{\Gamma\left(b_{1}+k\right) \Gamma\left(b_{2}+k\right) \cdots \Gamma\left(b_{q}+k\right)} \frac{z^{k}}{k!}$
(we saw the special case ${ }_{2} F_{1}$ in [42]). Define

$$
\begin{aligned}
\Phi_{n}(y)= & \frac{9}{16 \pi} \frac{2^{n / 2}}{(n-2)!} \Gamma\left(1+\frac{n}{2}\right)^{3} y^{(n-3) / 2}\left\{-\frac{4 \pi^{3 / 2}}{\sqrt{3}} \frac{1}{\Gamma\left(\frac{1}{2}+\frac{n}{4}\right) \Gamma\left(1+\frac{n}{4}\right)}\left(\frac{4 y}{27}\right)^{1 / 2}-\right. \\
& \frac{3 \Gamma\left(-\frac{5}{6}\right) \Gamma\left(\frac{1}{6}\right)}{2^{2 / 3} \sqrt{\pi}} \frac{1}{\Gamma\left(\frac{1}{6}+\frac{n}{4}\right) \Gamma\left(\frac{2}{3}+\frac{n}{4}\right)}\left(\frac{4 y}{27}\right)^{5 / 6}{ }_{4} F_{3}\left(\frac{1}{3}, \frac{1}{3}, \frac{5}{6}-\frac{n}{4}, \frac{1}{3}-\frac{n}{4} ; \frac{2}{3}, \frac{11}{6}, \frac{4}{3} ; \frac{4 y}{27}\right)+ \\
& \frac{9 \sqrt{\pi} \Gamma\left(-\frac{7}{6}\right)}{2^{1 / 3} \Gamma\left(\frac{1}{6}\right)} \frac{1}{\Gamma\left(-\frac{1}{6}+\frac{n}{4}\right) \Gamma\left(\frac{1}{3}+\frac{n}{4}\right)}\left(\frac{4 y}{27}\right)^{7 / 6}{ }_{4} F_{3}\left(\frac{2}{3}, \frac{2}{3}, \frac{7}{6}-\frac{n}{4}, \frac{2}{3}-\frac{n}{4} ; \frac{4}{3}, \frac{13}{6}, \frac{5}{3} ; \frac{4 y}{27}\right)+ \\
& \left.\frac{4 \sqrt{\pi}}{3} \frac{1}{\Gamma\left(1+\frac{n}{4}\right) \Gamma\left(\frac{3}{2}+\frac{n}{4}\right)}{ }_{4} F_{3}\left(-\frac{1}{2},-\frac{1}{2},-\frac{n}{4},-\frac{1}{2}-\frac{n}{4} ; \frac{1}{6},-\frac{1}{6}, \frac{1}{2} ; \frac{4 y}{27}\right)\right\}
\end{aligned}
$$

for $n \geq 2$ and $0<y<27 / 4$. Then the density $h(x)$ for area of a random uniform triangle in the unit disk is $8 x \Phi_{2}\left(4 x^{2}\right)$, which satisfies the limiting properties mentioned earlier. Also, using $8 x \Phi_{3}\left(4 x^{2}\right)$, we deduce that $\mathrm{E}\left(\operatorname{area}^{2}\right)=9 / 50$ for the unit ball.

The bivariate density for (a, b) in the unit disk can be found, imitating Parry's [26] analysis. Finch [43] concluded that

$$
\begin{gathered}
\mathrm{E}(a b)=0.8378520652 \ldots, \quad \rho(a, b)=0.1002980835 \ldots, \\
\mathrm{E}\left(\text { perimeter }^{2}\right)=8.0271123917 \ldots
\end{gathered}
$$

but exact evaluation of these constants remains open.

References

[1] F. Barthe, O. Guédon, S. Mendelson and A. Naor, A probabilistic approach to the geometry of the ℓ_{p}^{n}-ball, Annals Probab. 33 (2005) 480-513; MR2123199 (2006g:46014).
[2] S. R. Finch, Random triangles, unpublished note (2010).
[3] S. R. Finch, Random triangles II, unpublished note (2010).
[4] E. Borel, Principes et formules classiques du calcul des probabilités, t. 1, Traité du calcul des Probabilités et de ses Applications, f. 1, Gauthier-Villars, 1925, pp. 74-90.
[5] R. Deltheil, Probabilités Géométriques, t. 2, Traité du calcul des Probabilités et de ses Applications, f. 2, ed E. Borel, Gauthier-Villars, 1926, pp. 40-42, 114-120.
[6] J. M. Hammersley, The distribution of distance in a hypersphere, Annals Math. Statist. 21 (1950) 447-452; MR0037481 (12,268e).
[7] R. D. Lord, The distribution of distance in a hypersphere, Annals Math. Statist. 25 (1954) 794-798; MR0065048 (16,377d).
[8] V. S. Alagar, The distribution of the distance between random points, J. Appl. Probab. 13 (1976) 558-566; MR0418183 (54 2\#6225).
[9] H. Solomon, Geometric Probability, SIAM, 1978, pp. 35-36, 128-129; MR0488215 (58 \#7777).
[10] S. R. Dunbar, The average distance between points in geometric figures, College Math. J. 28 (1997) 187-197; MR1444006 (98a:52007).
[11] S.-J. Tu and E. Fischbach, Random distance distribution for spherical objects: general theory and applications to physics, J. Phys. A 35 (2002) 6557-6570; MR1928848.
[12] R. Sullivan, Crofton's Theorem for Parametrized Families of Convex Polygons, Ph.D. thesis, Lehigh Univ., 1996.
[13] B. Eisenberg and R. Sullivan, Random triangles in n dimensions, Amer. Math. Monthly 103 (1996) 308-318; MR1383668 (96m:60025).
[14] C. Small, Random uniform triangles and the alignment problem, Math. Proc. Cambridge Philos. Soc. 91 (1982) 315-322; MR0641532 (83b:62033).
[15] W. S. B. Woolhouse, Problem 1350, Mathematical Questions and Solutions from the "Educational Times", v. 1, ed. W. J. Miller, Hodgson \& Son, Jul. 1863-Jun. 1864, pp. 49-51; http://books.google.com/.
[16] G. R. Hall, Acute triangles in the n-ball, J. Appl. Probab. 19 (1982) 712-715; MR0664859 (83h:60016).
[17] C. Buchta, A note on the volume of a random polytope in a tetrahedron, Illinois J. Math. 30 (1986) 653-659; MR0857217 (87m:60038).
[18] C. M. Ingleby, Correction on the four-point problem, Mathematical Questions and Solutions from the "Educational Times", v. 5, ed. W. J. Miller, Hodgson \& Son, Jan.-Jul. 1866, pp. 108-109; http://books.google.com/.
[19] W. S. B. Woolhouse, Some additional observations, Mathematical Questions and Solutions from the "Educational Times", v. 7, ed. W. J. Miller, Hodgson \& Son, Jan.-Jul. 1867, pp. 81-83; http://books.google.com/.
[20] W. S. B. Woolhouse, Problem 2471, Mathematical Questions and Solutions from the "Educational Times", v. 8, ed. W. J. Miller, Hodgson \& Son, Jul.-Dec. 1867, pp. 100-105; http://books.google.com/.
[21] M. G. Kendall and P. A. P. Moran, Geometrical Probability, Hafner, 1963, pp. 42-46; MR0174068 (30 \#4275).
[22] N. Henze, Random triangles in convex regions, J. Appl. Probab. 20 (1983) 111125; MR0688085 (84g:60019).
[23] A. M. Mathai, An Introduction to Geometrical Probability, Gordon and Breach, 1999, pp. 159-171; MR1737197 (2001a:60014).
[24] V. Klee, What is the expected volume of a simplex whose vertices are chosen at random from a given convex body? Amer. Math. Monthly 76 (1969) 286-288; MR1535340.
[25] R. E. Pfiefer, The historical development of J. J. Sylvester's four point problem, Math. Mag. 62 (1989) 309-317; MR1031429 (90m:52001).
[26] M. Parry, Application of Geometric Probability Techniques to Elementary Particle and Nuclear Physics, Ph.D. thesis, Purdue Univ., 1998.
[27] M. Parry and E. Fischbach, Probability distribution of distance in a uniform ellipsoid: theory and applications to physics, J. Math. Phys. 41 (2000) 24172433; MR1751899 (2001j:81267).
[28] C. Buchta and J. Müller, Random polytopes in a ball, J. Appl. Probab. 21 (1984) 753-762; MR0766813 (86e:60013).
[29] B. Ghosh, Random distances within a rectangle and between two rectangles, Bull. Calcutta Math. Soc. 43 (1951) 17-24; MR0044765 (13,475a).
[30] E. Langford, The probability that a random triangle is obtuse, Biometrika 56 (1969) 689-690.
[31] E. Langford, A problem in geometrical probability, Math. Mag. 43 (1970) 237244; MR0298725 (45 \#7774).
[32] P. Valtr, Probability that n random points are in convex position, Discrete Comput. Geom. 13 (1995) 637-643; MR1318803 (96c:60017).
[33] M. Trott, The area of a random triangle, Mathematica J. 7 (1998) 189-198; http://www.mathematica-journal.com/issue/v7i2/features/trott/.
[34] Z. F. Seidov, Random triangle problem: geometrical approach, arXiv:math/0002134.
[35] J. Philip, The area of a random convex polygon, unpublished manuscript (2004), http://www.math.kth.se/~johanph/.
[36] D. P. Robbins and T. S. Bolis, Average distance between two points in a box, Amer. Math. Monthly 85 (1978) 277-278.
[37] A. M. Mathai, P. Moschopoulos and G. Pederzoli, Distance between random points in a cube, Statistica (Bologna) 59 (1999) 6181; http://www.math.utep.edu/Faculty/moschopoulos/; MR1793157 (2001h:60031).
[38] J. Philip, The probability distribution of the distance between two random points in a box, unpublished manuscript (2007), http://www.math.kth.se/~johanph/.
[39] S. R. Finch, Simulations in R involving triangles and tetrahedra, http://www.people.fas.harvard.edu/~sfinch/csolve/rsimul.html.
[40] S. R. Finch, Rectilinear crossing constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 532-534.
[41] A. M. Mathai, On a conjecture in geometric probability regarding asymptotic normality of a random simplex, Annals Probab. 10 (1982) 247-251; MR0637392 (82m:60019).
[42] S. R. Finch, Riemann zeta moments, unpublished note (2007).
[43] S. R. Finch, Perimeter variance of uniform random triangles, arXiv:1007.0261.

[^0]: ${ }^{0}$ Copyright © 2010 by Steven R. Finch. All rights reserved.

