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We step back momentarily to gain perspective. By parabolic geometry is meant
the study of distances, angles, etc. in a Riemannian manifold having zero scalar
curvature; for example, geometry in two-dimensional Euclidean space R? (the planar
model).

By elliptic geometry is meant the study of such properties in a Riemannian
manifold having positive scalar curvature. Given a line (geodesic) L and a point P
not on L, there is no line parallel to L passing through P. The sum of the three angles
of a triangle is greater than m; the quantity (a+ 5 + ) — 7 is called angular excess.
The simplest example of this geometry is the spherical model S embedded in three-
dimensional Euclidean space R3. Geodesics are great circles, that is, intersections of
S with two-dimensional subspaces of R3.

By hyperbolic geometry is meant the study of such properties in a Riemannian
manifold having negative scalar curvature. Given a line (geodesic) L and a point P
not on L, there are at least two distinct lines parallel to L passing through P. The
sum of the three angles of a triangle is less than 7; the quantity 7 — (o + 5 + ) is
called angular defect. The simplest example of this geometry is the hyperboloidal
model H embedded in three-dimensional Minkowski space M. Geodesics are great
hyperbolas, that is, nonempty intersections of H with two-dimensional subspaces of
MB3.

With regard to the latter, M3 is the vector space of ordered real triples (just like
R3) equipped with the symmetric bilinear form [1, 2, 3]

q [(CL‘, Y, 2)7 (U, U, U})] = —ZW + ru + Yyv
instead of the usual (positive definite) inner product

Define the unit hyperboloid H to be the positive sheet (z > 0) of points satisfying
q[(z,y, 2), (z,,2)] = —1; equivalently,

H:{(x,y,z)EM?’:z:\/1+x2+y2}.
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This is analogous to the unit sphere S of points satisfying p[(z, v, 2), (x,y, 2)] = 1;

equivalently,
S = {(x,y,z) cR3: z:j:\/l—xQ—yQ}.

Distance between two points in H:
arccosh (_q va Y, ’Z)v (U, v, UJ)])

is analogous to distance between two points in S:

arccos (p[(x,y, z), (u, v, w)])

(the latter is the angle at the origin determined by the two vectors).

A hyperbolic triangle T is a region enclosed by three geodesics on H. The sides
of T" are arcs of great hyperbolas and have length a, b, c¢. Since H is non-compact,
there is no upper bound on these. To define a uniform distribution, we will need to
introduce some restrictions. The angle o opposite side a is the dihedral angle between
the two planes passing through the origin and determined by arcs b, c. The angles
B, ~v opposite sides b, ¢ are similarly defined. Each of these is < 7. By the Law of
Cosines for Sides:

cosh(c) = cosh(a) cosh(b) — sinh(a) sinh(b) cos(y)

we obtain
cos(y) = _cosh(c? - cosh(a) cosh(b)
sinh(a) sinh(b)
analogous to an expression for cos(y) in spherical trigonometry [4].
The disk of radius R > 0 on H is

Ar = {(x,y,2) € H : arccosh (—q|(x,y, 2),(0,0,1)]) < R}
= {(v,y,2) € H:z<cosh(R)}.

This is analogous to the disk of radius 0 < R < 7w on S:
{(z,y,2) € S rarccos (p[(z,9,2),(0,0,1)]) < R} = {(z,9,2) € 5: 2 = cos(R)};

the special case when R = 7/2 is a hemisphere on S.
The orthogonal projection of Ar (C H) into the zy-plane gives simply the disk
72 + y? < sinh(R)? because

V1+22+y%2=2<cosh(R) implies 2%+ y? <cosh(R)?—1=sinh(R)%.

It is hence apparent [5] that circular circumference is proportional to sinh(R).
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An alternative mapping from Ap into the xy-plane is nonlinear:

V22 — 1cos(0)
V22 —1sin(0) | = (

z

arccosh(z) cos(6) )
arccosh(z) sin(0)

but has the advantage that Ap is mapped onto the (even simpler) disk 2%+ 3? < R2.
The inverse mapping

rsin(6) sinh(r) sin(d)

reos(®) ) sinh(r) cos(0)
< ) > cosh(r)

will be helpful soon; call this ® for convenience.

We now discuss the random generation of uniform points in Ag. Here it is useful
to first review the generation of points in the Euclidean planar disk of radius R.
We want distance £ between a random point and the center (0,0) to possess density
function

f©) =6 0<E<R

(proportional to circular circumference, radius £). The cumulative distribution is

2 1
nZF(é):/—tdt:— . 0<np<1
hence { = R,/1. By the inverse CDF method, the point

R, /1 cos(0) : :
( R\ /7 sin(0) where 1 ~ Unif{0, 1], 6 ~ Unif[0, 27]
satisfies the desired uniformity condition.

Returning now to Ay, we want distance £ between a random point and the center
(0,0,1) to possess density function [6, 7]

£(6) = sinh(&)

=—— > 0 R
cosh(R) — 1’ <&<

(again by proportionality). The cumulative distribution is

sinh() cosh(§) — 1

n:F(f):/cosh(R)—ldt:cosh(R)—l’ O<n<l
0
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hence ¢ = arccosh (1 + (cosh(R) — 1)n). In the planar disk of radius R, the point

< arccosh (1 + (cosh(R) — % n) cos(f

) : .
arccosh (1 + (cosh(R) — 1)n) sin(#) where 7 ~ Unif[0, 1], 6 ~ Unif|0, 27]

is more likely to appear near the circular boundary than near the center. Applying
the transformation ®, we obtain that

\/(1 + (cosh(R) — 1)n)* — 1 cos(h)
V/(L+ (cosh(R) — 1)n)* — Lsin(0)
1+ (cosh(R) — 1)n

where 7 ~ Unif]0, 1], 6 ~ Unif[0, 27]

satisfies the desired uniformity condition in Ag.

0.1. Sides. We do not know the trivariate density f(z,y, z) for sides a, b, ¢ of a
uniform random triangle in Ag. Let

cosh(a) cosh(b) cosh(c)
12 Y = 12 Z = 12

denote normalized sides, where L = cosh(R)—1. The trivariate characteristic function

X =

E (exp (irX + isY +it7))

has a complicated quintuple integral expression [6, 7] that we choose not to reproduce
here. Setting r = s = 0, the following expression for the univariate characteristic
function for Z emerges:

or 141/L1+1/L

e Y B 1 e B e e | s

0 1/L 1/L
14+1/L141/L

[ [ (e ) vt

1/L  1/L

where Jy(6) is the zeroth Bessel function of the first kind. It follows that

L+2)\? o LY+ 6L+ 1312+ 120 +6
B(2) = (552) . )= i

and, in the limit as R — oo, the univariate density of Z tends to
2 /2

1
—14+—4/=—1+4 —arccos(1 —¢), 0<(<2.
m\ C T
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It also follows that
(L+2)*(L*+3L+3)

1214
from the biivariate characteristic function for Y, Z:

B(Y Z) =

141/L141/L141/L

/ / / Jo <5\/u2 - %\/102 - %) Jo (t\/u2 - %\/122 - %) exp (isuw + ituv) du dv dw.

/L 1L 1/L
A complicated expression for the limiting trivariate density of X, Y, Z exists [6] in
terms of a certain elliptic integral, but again we omit this.

0.2. Angles. We know even less about the density for angles «, /3, v of a uniform
random triangle in Ag. This is unfortunate since the angular defect 7 — (o + 5 + )
is equal to the area of the triangle and this is an important quantity to understand.
By the Law of Cosines for Sides, a triangle is acute if and only if the three
inequalities
cosh(a) cosh(b) > cosh(c),
cosh(a) cosh(c) > cosh(b),
cosh(b) cosh(c) > cosh(a)
hold, which permits a proof of [7]
I%im P(a uniform triangle in Ag is acute) = 1.
—00
We close with an interesting variation. The circumscribed circle of a triangle
is a circle that goes through the three vertices of the triangle. If such a circle exists,
its center is called the circumcenter (which coincides with the intersection of the

three perpendicular bisectors of the sides). We say, under such a condition, that the
triangle possesses a circumcenter. This is true if and only if the three inequalities

sinh <%) < sinh (g) + sinh <g> ,
st (5 ) < sint (5) + s (5).
sinh (g) < sinh (%) + sinh (g)

hold, which inspires a numerical computation [7]

I%im P(a uniform triangle in Ag possesses a circumcenter) = 0.4596203....

No exact expression for this constant is known. See [8] for experimental confirmations
of the preceding.
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