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We step back momentarily to gain perspective. By parabolic geometry is meant

the study of distances, angles, etc. in a Riemannian manifold having zero scalar

curvature; for example, geometry in two-dimensional Euclidean space R2 (the planar
model).

By elliptic geometry is meant the study of such properties in a Riemannian

manifold having positive scalar curvature. Given a line (geodesic)  and a point 

not on , there is no line parallel to  passing through  . The sum of the three angles

of a triangle is greater than ; the quantity (+  + )−  is called angular excess.

The simplest example of this geometry is the spherical model  embedded in three-

dimensional Euclidean space R3. Geodesics are great circles, that is, intersections of
 with two-dimensional subspaces of R3.
By hyperbolic geometry is meant the study of such properties in a Riemannian

manifold having negative scalar curvature. Given a line (geodesic)  and a point 

not on , there are at least two distinct lines parallel to  passing through  . The

sum of the three angles of a triangle is less than ; the quantity  − ( +  + ) is

called angular defect. The simplest example of this geometry is the hyperboloidal

model  embedded in three-dimensional Minkowski space M3. Geodesics are great

hyperbolas, that is, nonempty intersections of  with two-dimensional subspaces of

M3.

With regard to the latter, M3 is the vector space of ordered real triples (just like

R3) equipped with the symmetric bilinear form [1, 2, 3]

 [(  ) (  )] = − + + 

instead of the usual (positive definite) inner product

 [(  ) (  )] = +  + 

Define the unit hyperboloid  to be the positive sheet (  0) of points satisfying

[(  ) (  )] = −1; equivalently,

 =
n
(  ) ∈M3 :  =

p
1 + 2 + 2

o


0Copyright c° 2010 by Steven R. Finch. All rights reserved.

1



Random Triangles IV 2

This is analogous to the unit sphere  of points satisfying [(  ) (  )] = 1;

equivalently,

 =
n
(  ) ∈ R3 :  = ±

p
1− 2 − 2

o


Distance between two points in :

arccosh (− [(  ) (  )])

is analogous to distance between two points in :

arccos ( [(  ) (  )])

(the latter is the angle at the origin determined by the two vectors).

A hyperbolic triangle  is a region enclosed by three geodesics on . The sides

of  are arcs of great hyperbolas and have length , , . Since  is non-compact,

there is no upper bound on these. To define a uniform distribution, we will need to

introduce some restrictions. The angle  opposite side  is the dihedral angle between

the two planes passing through the origin and determined by arcs , . The angles

,  opposite sides ,  are similarly defined. Each of these is ≤ . By the Law of

Cosines for Sides:

cosh() = cosh() cosh()− sinh() sinh() cos()

we obtain

cos() = −cosh()− cosh() cosh()
sinh() sinh()

analogous to an expression for cos() in spherical trigonometry [4].

The disk of radius   0 on  is

∆ = {(  ) ∈  : arccosh (− [(  ) (0 0 1)]) ≤ }
= {(  ) ∈  :  ≤ cosh()} 

This is analogous to the disk of radius 0     on :

{(  ) ∈  : arccos ( [(  ) (0 0 1)]) ≤ } = {(  ) ∈  :  ≥ cos()} ;
the special case when  = 2 is a hemisphere on .

The orthogonal projection of ∆ (⊂ ) into the -plane gives simply the disk

2 + 2 ≤ sinh()2 becausep
1 + 2 + 2 =  ≤ cosh() implies 2 + 2 ≤ cosh()2 − 1 = sinh()2

It is hence apparent [5] that circular circumference is proportional to sinh().



Random Triangles IV 3

An alternative mapping from ∆ into the -plane is nonlinear:⎛⎝ √2 − 1 cos()√
2 − 1 sin()



⎞⎠ 7→
µ
arccosh() cos()

arccosh() sin()

¶

but has the advantage that ∆ is mapped onto the (even simpler) disk 
2+ 2 ≤ 2.

The inverse mapping µ
 cos()

 sin()

¶
7→
⎛⎝ sinh() cos()

sinh() sin()

cosh()

⎞⎠
will be helpful soon; call this Φ for convenience.

We now discuss the random generation of uniform points in ∆. Here it is useful

to first review the generation of points in the Euclidean planar disk of radius .

We want distance  between a random point and the center (0 0) to possess density

function

() =
2

2
 0    

(proportional to circular circumference, radius ). The cumulative distribution is

 =  () =

Z
0

2

2
  =

1

2
2 0    1

hence  = 
√
. By the inverse CDF method, the pointµ

√
 cos()


√
 sin()

¶
where  ∼ Unif[0 1]  ∼ Unif[0 2]

satisfies the desired uniformity condition.

Returning now to ∆, we want distance  between a random point and the center

(0 0 1) to possess density function [6, 7]

() =
sinh()

cosh()− 1  0    

(again by proportionality). The cumulative distribution is

 =  () =

Z
0

sinh()

cosh()− 1  =
cosh()− 1
cosh()− 1  0    1
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hence  = arccosh (1 + (cosh()− 1)). In the planar disk of radius , the pointµ
arccosh (1 + (cosh()− 1)) cos()
arccosh (1 + (cosh()− 1)) sin()

¶
where  ∼ Unif[0 1]  ∼ Unif[0 2]

is more likely to appear near the circular boundary than near the center. Applying

the transformation Φ, we obtain that⎛⎜⎜⎝
q
(1 + (cosh()− 1))2 − 1 cos()q
(1 + (cosh()− 1))2 − 1 sin()

1 + (cosh()− 1)

⎞⎟⎟⎠ where  ∼ Unif[0 1]  ∼ Unif[0 2]

satisfies the desired uniformity condition in ∆.

0.1. Sides. We do not know the trivariate density (  ) for sides , ,  of a

uniform random triangle in ∆. Let

 =
cosh()

2
  =

cosh()

2
  =

cosh()

2

denote normalized sides, where  = cosh()−1. The trivariate characteristic function
E (exp ( +  + ))

has a complicated quintuple integral expression [6, 7] that we choose not to reproduce

here. Setting  =  = 0, the following expression for the univariate characteristic

function for  emerges:

1

2

2Z
0

1+1Z
1

1+1Z
1

exp

"


Ã
 − cos()

r
2 − 1

2

r
2 − 1

2

!#
  

=

1+1Z
1

1+1Z
1

0

Ã


r
2 − 1

2

r
2 − 1

2

!
exp ()  

where 0() is the zeroth Bessel function of the first kind. It follows that

E() =

µ
+ 2

2

¶2
 E(2) =

4 + 63 + 132 + 12+ 6

64

and, in the limit as →∞, the univariate density of  tends to

−1 + 2


r
2


− 1 + 1


arccos(1− ) 0    2
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It also follows that

E( ) =
(+ 2)2(2 + 3+ 3)

124

from the biivariate characteristic function for  , :

1+1Z
1

1+1Z
1

1+1Z
1

0

Ã


r
2 − 1

2

r
2 − 1

2

!
0

Ã


r
2 − 1

2

r
2 − 1

2

!
exp ( + )   

A complicated expression for the limiting trivariate density of ,  ,  exists [6] in

terms of a certain elliptic integral, but again we omit this.

0.2. Angles. We know even less about the density for angles , ,  of a uniform

random triangle in ∆. This is unfortunate since the angular defect − (+  + )

is equal to the area of the triangle and this is an important quantity to understand.

By the Law of Cosines for Sides, a triangle is acute if and only if the three

inequalities

cosh() cosh()  cosh()

cosh() cosh()  cosh()

cosh() cosh()  cosh()

hold, which permits a proof of [7]

lim
→∞P

(a uniform triangle in ∆ is acute) = 1

We close with an interesting variation. The circumscribed circle of a triangle

is a circle that goes through the three vertices of the triangle. If such a circle exists,

its center is called the circumcenter (which coincides with the intersection of the

three perpendicular bisectors of the sides). We say, under such a condition, that the

triangle possesses a circumcenter. This is true if and only if the three inequalities

sinh
³
2

´
 sinh

µ


2

¶
+ sinh

³ 
2

´


sinh

µ


2

¶
 sinh

³
2

´
+ sinh

³ 
2

´


sinh
³
2

´
 sinh

³
2

´
+ sinh

µ


2

¶
hold, which inspires a numerical computation [7]

lim
→∞P

(a uniform triangle in ∆ possesses a circumcenter) = 04596203

No exact expression for this constant is known. See [8] for experimental confirmations

of the preceding.
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