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As a conclusion of our survey, we gather various results for random triangles in the

plane subject to constraints. If we break a line segment  in two places at random,

the three pieces can be configured as a triangle with probability 14 [1, 2, 3, 4]. If we

instead select three points on a circle Γ at random, a triangle can almost surely be

formed by connecting each pair of points with a line. Assuming  has length 1 and

Γ has radius 1, what can be said about sides and angles of such triangles?

0.1. Unit Perimeter. Consider the broken  model, with the condition that

triangle inequalities are satisfied. The bivariate density for two arbitrary sides ,  is

[5, 6] ½
8 if 0    12, 0    12 and +   12

0 otherwise.

Integrating on  from 12−  to 12, the univariate density for  is½
8 if 0    12,

0 otherwise

and corresponding moments are

E() = 13 = 03333333333  E(2) = 18 = 0125

As in [7], the cross-correlation coefficient ( ) = −12, hence

E( ) = 548 = 01041666666

The Law of Cosines (with third side  = 1− − ) and a Jacobian determinant

calculation imply that the bivariate density for two angles ,  is⎧⎨⎩ 8
sin() sin() sin(+ )

(sin() + sin() + sin(+ ))
3

if 0    , 0     and +   

0 otherwise.
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This is a new result, as far as is known, although it bears resemblance to formulas in

[7]. Integrating on  from 0 to  − , the univariate density for  is⎧⎨⎩ −8
(3− cos()) sin()
(1 + cos())3

ln
³
sin
³
2

´´
− 8 sin()

(1 + cos())2
if 0    ,

0 otherwise

and corresponding moments are

E() = 3 = 10471975511  E(2) = 83− 29 = 15700439554

Because ( ) = −12, we have

E() = −43 + 229 = 08599120891

It is feasible to calculate the density for the maximum angle (omitted). The proba-

bility that a broken  triangle is obtuse can be shown to be [8, 9, 10]

9− 12 ln(2) = 06822338332 = 1− 03177661667

For area
p
(12)(12− )(12− )(+ − 12), it is surprising that exact mo-

ment formulas can be found [6]:

E(area) =


105
= 00299199300 E(area2) =

1

960
= 00010416666

A similar set of computations for triangles of unit area has not yet been undertaken.

0.2. Unit Circumradius. Consider the selection Γ model, equivalently, all tri-

angles inscribing the unit circle. The bivariate density for two arbitrary angles , 

is [11, 12, 13] ½
22 if 0    , 0     and +   

0 otherwise.

To prove this, use the fact that an inscribed angle is one-half the length of its inter-

cepted circular arc [14, 15]. Integrating on  from 0 to  − , the univariate density

for  is ½
2( − )2 if 0    ,

0 otherwise

and corresponding moments are

E() = 3 = 10471975511  E(2) = 26 = 16449340668
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As before, the cross-correlation coefficient ( ) = −12, hence
E() = 212 = 08224670334

The angle  is maximum if    and    − −  [7]. Hence the density for the

maximum angle is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
3

Z
−2

22  if 3    2

3

−Z
0

22  if 2    

=

½
6(3− )2 if 3    2

6( − )2 if 2    

and the probability that a selection Γ triangle is obtuse [8, 9, 13] is 34 = 075

The univariate density for  is [16, 17]⎧⎨⎩
2



1√
4− 2

if 0    2,

0 otherwise

and corresponding moments are

E() = 4 = 12732395447 E(2) = 2

It can be shown that sides ,  are independent, which is delightfully paradoxical

since angles ,  are dependent and

 = 2 sin()  = 2 sin()

The remaining side  satisfies

 =

½
1
2

¡

√
4− 2 + 

√
4− 2

¢
with probability 12

1
2

¯̄

√
4− 2 − 

√
4− 2

¯̄
with probability 12

but a simple expression for the trivariate density of all three sides , ,  seems

unlikely.

For area (14)
p
(+ + )(−+ + )(− + )(+ − ), it is again surpris-

ing that exact moment formulas can be found [18, 19, 20]:

E(area) =
3

2
= 04774648292 E(area2) =

3

8
= 0375

We mention that analogous results for random tetrahedra inscribing the unit sphere

[19, 21, 22] are E(volume) = 4105 ≈ 011968 and E(volume2) = 281 ≈ 002469.
A similar set of computations for triangles circumscribing the unit circle Γ has

not yet been undertaken. Caution is needed, since Γ is an incircle if and only if there

is no semicircle containing all three contact points [9, 13]. Otherwise Γ is an excircle.
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0.3. Side-Angle-Side Example. Thus far we have examined cases when three

sides are given or three angles are given. Portnoy [23] studied an example in which

two sides  = cos(),  = sin() are given, where  is Uniform [0 2], as well as the

included angle , which is independent and Uniform [0 ]. Let us focus solely on the

obtuseness probability. By the Law of Cosines,

2 = 2 + 2 − 2  cos()

2 = 2 + 2 − 2  cos()
If  ≥ 2, then cos() ≤ 0 and 2 ≥ 2 + 2, hence

2 − 2 ≥ 2 = 2 + 2 − 2  cos()

hence

2  cos() ≥ 2 2

hence

cos() ≥  = cot()

and conversely. The probability that  ≥ 2 is thus

P {cos()− cot() ≥ 0} = 1− P {cos() + cot() ≥ 0}

by symmetry, and the latter probability (of a sum) is a convolution integral:

2

2

∞Z
0

+1Z
()

1p
1− (− )2

1

1 + 2
 

where () = max{− 1 0}. Reversing the order of integration, we obtain
3

4
+
1

2
ln
³
1 +
√
2
´2
= 1− 01712917389

as the value of the integral. Finally, the obtuseness probabilty for the triangle is

P { ≥ 2}+ P { ≥ 2}+ P { ≥ 2}

which becomes

1− 2

2
ln
³
1 +
√
2
´2
= 08425834778

This exact evaluation is new, as far as is known, improving on [23].

Experimental confirmation of the predictions in this essay is available [24].
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0.4. Addendum. The density for area of a random triangle inscribing the unit

circle is 8Ψ (42), where

Ψ() =
1

43
1√


(
Γ

µ
1

3

¶3µ
4

27

¶−16
21

µ
1

3

1

3

2

3

4

27

¶
−

3Γ

µ
2

3

¶3µ
4

27

¶16
21

µ
2

3

2

3

4

3

4

27

¶)


21 is the Gauss hypergeometric function [25] and 0    274. This formula

corrects that which appears in Case III of [26]. Random tetrahedra inscribing the

unit sphere are the subject of [27]; the motivation is not a volume density but rather

a coverage probability.

Random triangles of unit inradius are studied in [28]. The bivariate density for

angles is the same as in the unit circumradius scenario; the univariate density for a

side is

16

2

 arctan
³
+
√
2−4
2

´
−  arctan

³
−
√
2−4
2

´
+ ln

³
+
√
2−4

−√2−4

´
(2 + 4)

for   2. A side has infinite mean and median 55482039188. The perimeter also

has infinite mean, but nothing else is known precisely.

Further analysis encompassing both unit perimeter triangles/Portnoy’s SAS tri-

angles and unit area triangles (à la “throwing paint”) appears in [29, 30] with many

more constants.
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