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As a conclusion of our survey, we gather various results for random triangles in the

plane subject to constraints. If we break a line segment  in two places at random,

the three pieces can be configured as a triangle with probability 14 [1, 2, 3, 4]. If we

instead select three points on a circle Γ at random, a triangle can almost surely be

formed by connecting each pair of points with a line. Assuming  has length 1 and

Γ has radius 1, what can be said about sides and angles of such triangles?

0.1. Unit Perimeter. Consider the broken  model, with the condition that

triangle inequalities are satisfied. The bivariate density for two arbitrary sides ,  is

[5, 6] ½
8 if 0    12, 0    12 and +   12

0 otherwise.

Integrating on  from 12−  to 12, the univariate density for  is½
8 if 0    12,

0 otherwise

and corresponding moments are

E() = 13 = 03333333333  E(2) = 18 = 0125

As in [7], the cross-correlation coefficient ( ) = −12, hence

E( ) = 548 = 01041666666

The Law of Cosines (with third side  = 1− − ) and a Jacobian determinant

calculation imply that the bivariate density for two angles ,  is⎧⎨⎩ 8
sin() sin() sin(+ )

(sin() + sin() + sin(+ ))
3

if 0    , 0     and +   

0 otherwise.
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This is a new result, as far as is known, although it bears resemblance to formulas in

[7]. Integrating on  from 0 to  − , the univariate density for  is⎧⎨⎩ −8
(3− cos()) sin()
(1 + cos())3

ln
³
sin
³
2

´´
− 8 sin()

(1 + cos())2
if 0    ,

0 otherwise

and corresponding moments are

E() = 3 = 10471975511  E(2) = 83− 29 = 15700439554

Because ( ) = −12, we have

E() = −43 + 229 = 08599120891

It is feasible to calculate the density for the maximum angle (omitted). The proba-

bility that a broken  triangle is obtuse can be shown to be [8, 9, 10]

9− 12 ln(2) = 06822338332 = 1− 03177661667

For area
p
(12)(12− )(12− )(+ − 12), it is surprising that exact mo-

ment formulas can be found [6]:

E(area) =


105
= 00299199300 E(area2) =

1

960
= 00010416666

A similar set of computations for triangles of unit area has not yet been undertaken.

0.2. Unit Circumradius. Consider the selection Γ model, equivalently, all tri-

angles inscribing the unit circle. The bivariate density for two arbitrary angles , 

is [11, 12, 13] ½
22 if 0    , 0     and +   

0 otherwise.

To prove this, use the fact that an inscribed angle is one-half the length of its inter-

cepted circular arc [14, 15]. Integrating on  from 0 to  − , the univariate density

for  is ½
2( − )2 if 0    ,

0 otherwise

and corresponding moments are

E() = 3 = 10471975511  E(2) = 26 = 16449340668
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As before, the cross-correlation coefficient ( ) = −12, hence
E() = 212 = 08224670334

The angle  is maximum if    and    − −  [7]. Hence the density for the

maximum angle is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
3

Z
−2

22  if 3    2

3

−Z
0

22  if 2    

=

½
6(3− )2 if 3    2

6( − )2 if 2    

and the probability that a selection Γ triangle is obtuse [8, 9, 13] is 34 = 075

The univariate density for  is [16, 17]⎧⎨⎩
2



1√
4− 2

if 0    2,

0 otherwise

and corresponding moments are

E() = 4 = 12732395447 E(2) = 2

It can be shown that sides ,  are independent, which is delightfully paradoxical

since angles ,  are dependent and

 = 2 sin()  = 2 sin()

The remaining side  satisfies

 =

½
1
2

¡

√
4− 2 + 

√
4− 2

¢
with probability 12

1
2

¯̄

√
4− 2 − 

√
4− 2

¯̄
with probability 12

but a simple expression for the trivariate density of all three sides , ,  seems

unlikely.

For area (14)
p
(+ + )(−+ + )(− + )(+ − ), it is again surpris-

ing that exact moment formulas can be found [18, 19, 20]:

E(area) =
3

2
= 04774648292 E(area2) =

3

8
= 0375

We mention that analogous results for random tetrahedra inscribing the unit sphere

[19, 21, 22] are E(volume) = 4105 ≈ 011968 and E(volume2) = 281 ≈ 002469.
A similar set of computations for triangles circumscribing the unit circle Γ has

not yet been undertaken. Caution is needed, since Γ is an incircle if and only if there

is no semicircle containing all three contact points [9, 13]. Otherwise Γ is an excircle.
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0.3. Side-Angle-Side Example. Thus far we have examined cases when three

sides are given or three angles are given. Portnoy [23] studied an example in which

two sides  = cos(),  = sin() are given, where  is Uniform [0 2], as well as the

included angle , which is independent and Uniform [0 ]. Let us focus solely on the

obtuseness probability. By the Law of Cosines,

2 = 2 + 2 − 2  cos()

2 = 2 + 2 − 2  cos()
If  ≥ 2, then cos() ≤ 0 and 2 ≥ 2 + 2, hence

2 − 2 ≥ 2 = 2 + 2 − 2  cos()

hence

2  cos() ≥ 2 2

hence

cos() ≥  = cot()

and conversely. The probability that  ≥ 2 is thus

P {cos()− cot() ≥ 0} = 1− P {cos() + cot() ≥ 0}

by symmetry, and the latter probability (of a sum) is a convolution integral:

2

2

∞Z
0

+1Z
()

1p
1− (− )2

1

1 + 2
 

where () = max{− 1 0}. Reversing the order of integration, we obtain
3

4
+
1

2
ln
³
1 +
√
2
´2
= 1− 01712917389

as the value of the integral. Finally, the obtuseness probabilty for the triangle is

P { ≥ 2}+ P { ≥ 2}+ P { ≥ 2}

which becomes

1− 2

2
ln
³
1 +
√
2
´2
= 08425834778

This exact evaluation is new, as far as is known, improving on [23].

Experimental confirmation of the predictions in this essay is available [24].
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0.4. Addendum. The density for area of a random triangle inscribing the unit

circle is 8Ψ (42), where

Ψ() =
1

43
1√


(
Γ

µ
1

3

¶3µ
4

27

¶−16
21

µ
1

3

1

3

2

3

4

27

¶
−

3Γ

µ
2

3

¶3µ
4

27

¶16
21

µ
2

3

2

3

4

3

4

27

¶)


21 is the Gauss hypergeometric function [25] and 0    274. This formula

corrects that which appears in Case III of [26]. Random tetrahedra inscribing the

unit sphere are the subject of [27]; the motivation is not a volume density but rather

a coverage probability.

Random triangles of unit inradius are studied in [28]. The bivariate density for

angles is the same as in the unit circumradius scenario; the univariate density for a

side is

16

2

 arctan
³
+
√
2−4
2

´
−  arctan

³
−
√
2−4
2

´
+ ln

³
+
√
2−4

−√2−4

´
(2 + 4)

for   2. A side has infinite mean and median 55482039188. The perimeter also

has infinite mean, but nothing else is known precisely.

Further analysis encompassing both unit perimeter triangles/Portnoy’s SAS tri-

angles and unit area triangles (à la “throwing paint”) appears in [29, 30] with many

more constants.
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