Random Triangles VI

Steven Finch

January 7, 2011
As a conclusion of our survey, we gather various results for random triangles in the plane subject to constraints. If we break a line segment L in two places at random, the three pieces can be configured as a triangle with probability $1 / 4[1,2,3,4]$. If we instead select three points on a circle Γ at random, a triangle can almost surely be formed by connecting each pair of points with a line. Assuming L has length 1 and Γ has radius 1, what can be said about sides and angles of such triangles?
0.1. Unit Perimeter. Consider the broken L model, with the condition that triangle inequalities are satisfied. The bivariate density for two arbitrary sides a, b is $[5,6]$

$$
\begin{cases}8 & \text { if } 0<x<1 / 2,0<y<1 / 2 \text { and } x+y>1 / 2, \\ 0 & \text { otherwise }\end{cases}
$$

Integrating on y from $1 / 2-x$ to $1 / 2$, the univariate density for a is

$$
\begin{cases}8 x & \text { if } 0<x<1 / 2 \\ 0 & \text { otherwise }\end{cases}
$$

and corresponding moments are

$$
\mathrm{E}(a)=1 / 3=0.3333333333 \ldots, \quad \mathrm{E}\left(a^{2}\right)=1 / 8=0.125
$$

As in [7], the cross-correlation coefficient $\rho(a, b)=-1 / 2$, hence

$$
\mathrm{E}(a b)=5 / 48=0.1041666666 \ldots
$$

The Law of Cosines (with third side $c=1-a-b$) and a Jacobian determinant calculation imply that the bivariate density for two angles α, β is

$$
\begin{cases}8 \frac{\sin (x) \sin (y) \sin (x+y)}{(\sin (x)+\sin (y)+\sin (x+y))^{3}} & \text { if } 0<x<\pi, 0<y<\pi \text { and } x+y<\pi \\ 0 & \text { otherwise }\end{cases}
$$

[^0]This is a new result, as far as is known, although it bears resemblance to formulas in [7]. Integrating on y from 0 to $\pi-x$, the univariate density for α is

$$
\begin{cases}-8 \frac{(3-\cos (x)) \sin (x)}{(1+\cos (x))^{3}} \ln \left(\sin \left(\frac{x}{2}\right)\right)-8 \frac{\sin (x)}{(1+\cos (x))^{2}} & \text { if } 0<x<\pi \\ 0 & \text { otherwise }\end{cases}
$$

and corresponding moments are

$$
\mathrm{E}(\alpha)=\pi / 3=1.0471975511 \ldots, \quad \mathrm{E}\left(\alpha^{2}\right)=8 / 3-\pi^{2} / 9=1.5700439554 \ldots
$$

Because $\rho(\alpha, \beta)=-1 / 2$, we have

$$
\mathrm{E}(\alpha \beta)=-4 / 3+2 \pi^{2} / 9=0.8599120891 \ldots
$$

It is feasible to calculate the density for the maximum angle (omitted). The probability that a broken L triangle is obtuse can be shown to be $[8,9,10]$

$$
9-12 \ln (2)=0.6822338332 \ldots=1-0.3177661667 \ldots
$$

For area $\sqrt{(1 / 2)(1 / 2-a)(1 / 2-b)(a+b-1 / 2)}$, it is surprising that exact moment formulas can be found [6]:

$$
\mathrm{E}(\text { area })=\frac{\pi}{105}=0.0299199300 \ldots, \quad \mathrm{E}\left(\mathrm{area}^{2}\right)=\frac{1}{960}=0.0010416666 \ldots
$$

A similar set of computations for triangles of unit area has not yet been undertaken.
0.2. Unit Circumradius. Consider the selection Γ model, equivalently, all triangles inscribing the unit circle. The bivariate density for two arbitrary angles α, β is $[11,12,13]$

$$
\begin{cases}2 / \pi^{2} & \text { if } 0<x<\pi, 0<y<\pi \text { and } x+y<\pi \\ 0 & \text { otherwise }\end{cases}
$$

To prove this, use the fact that an inscribed angle is one-half the length of its intercepted circular arc [14, 15]. Integrating on y from 0 to $\pi-x$, the univariate density for α is

$$
\begin{cases}2(\pi-x) / \pi^{2} & \text { if } 0<x<\pi \\ 0 & \text { otherwise }\end{cases}
$$

and corresponding moments are

$$
\mathrm{E}(\alpha)=\pi / 3=1.0471975511 \ldots, \quad \mathrm{E}\left(\alpha^{2}\right)=\pi^{2} / 6=1.6449340668 \ldots
$$

As before, the cross-correlation coefficient $\rho(\alpha, \beta)=-1 / 2$, hence

$$
\mathrm{E}(\alpha \beta)=\pi^{2} / 12=0.8224670334 \ldots
$$

The angle α is maximum if $\alpha>\beta$ and $\alpha>\pi-\alpha-\beta$ [7]. Hence the density for the maximum angle is

$$
\left\{\begin{array}{ll}
3 \int_{\pi-2 x}^{x} 2 / \pi^{2} d y & \text { if } \pi / 3<x<\pi / 2, \\
3-x & \\
3 \int_{0}^{\pi-x} 2 / \pi^{2} d y & \text { if } \pi / 2<x<\pi
\end{array}= \begin{cases}6(3 x-\pi) / \pi^{2} & \text { if } \pi / 3<x<\pi / 2, \\
6(\pi-x) / \pi^{2} & \text { if } \pi / 2<x<\pi\end{cases}\right.
$$

and the probability that a selection Γ triangle is obtuse $[8,9,13]$ is $3 / 4=0.75$.
The univariate density for a is $[16,17]$

$$
\begin{cases}\frac{2}{\pi} \frac{1}{\sqrt{4-x^{2}}} & \text { if } 0<x<2 \\ 0 & \text { otherwise }\end{cases}
$$

and corresponding moments are

$$
\mathrm{E}(a)=4 / \pi=1.2732395447 \ldots, \quad \mathrm{E}\left(a^{2}\right)=2
$$

It can be shown that sides a, b are independent, which is delightfully paradoxical since angles α, β are dependent and

$$
a=2 \sin (\alpha), \quad b=2 \sin (\beta) .
$$

The remaining side c satisfies

$$
c= \begin{cases}\frac{1}{2}\left(a \sqrt{4-b^{2}}+b \sqrt{4-a^{2}}\right) & \text { with probability } 1 / 2 \\ \frac{1}{2}\left|a \sqrt{4-b^{2}}-b \sqrt{4-a^{2}}\right| & \text { with probability } 1 / 2\end{cases}
$$

but a simple expression for the trivariate density of all three sides a, b, c seems unlikely.

For area $(1 / 4) \sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}$, it is again surprising that exact moment formulas can be found [18, 19, 20]:

$$
\mathrm{E}(\text { area })=\frac{3}{2 \pi}=0.4774648292 \ldots, \quad \mathrm{E}\left(\text { area }^{2}\right)=\frac{3}{8}=0.375 .
$$

We mention that analogous results for random tetrahedra inscribing the unit sphere $[19,21,22]$ are $\mathrm{E}($ volume $)=4 \pi / 105 \approx 0.11968$ and $\mathrm{E}\left(\right.$ volume $\left.^{2}\right)=2 / 81 \approx 0.02469$.

A similar set of computations for triangles circumscribing the unit circle Γ has not yet been undertaken. Caution is needed, since Γ is an incircle if and only if there is no semicircle containing all three contact points [9,13]. Otherwise Γ is an excircle.
0.3. Side-Angle-Side Example. Thus far we have examined cases when three sides are given or three angles are given. Portnoy [23] studied an example in which two sides $a=\cos (\theta), b=\sin (\theta)$ are given, where θ is Uniform $[0, \pi / 2]$, as well as the included angle γ, which is independent and Uniform $[0, \pi]$. Let us focus solely on the obtuseness probability. By the Law of Cosines,

$$
\begin{aligned}
& b^{2}=a^{2}+c^{2}-2 a c \cos (\beta) \\
& c^{2}=a^{2}+b^{2}-2 a b \cos (\gamma) .
\end{aligned}
$$

If $\beta \geq \pi / 2$, then $\cos (\beta) \leq 0$ and $b^{2} \geq a^{2}+c^{2}$, hence

$$
b^{2}-a^{2} \geq c^{2}=a^{2}+b^{2}-2 a b \cos (\gamma)
$$

hence

$$
2 a b \cos (\gamma) \geq 2 a^{2}
$$

hence

$$
\cos (\gamma) \geq a / b=\cot (\theta)
$$

and conversely. The probability that $\beta \geq \pi / 2$ is thus

$$
\mathrm{P}\{\cos (\gamma)-\cot (\theta) \geq 0\}=1-\mathrm{P}\{\cos (\gamma)+\cot (\theta) \geq 0\}
$$

by symmetry, and the latter probability (of a sum) is a convolution integral:

$$
\frac{2}{\pi^{2}} \int_{0}^{\infty} \int_{\xi(x)}^{x+1} \frac{1}{\sqrt{1-(x-y)^{2}}} \frac{1}{1+y^{2}} d y d x
$$

where $\xi(x)=\max \{x-1,0\}$. Reversing the order of integration, we obtain

$$
\frac{3}{4}+\frac{1}{\pi^{2}} \ln (1+\sqrt{2})^{2}=1-0.1712917389 \ldots
$$

as the value of the integral. Finally, the obtuseness probabilty for the triangle is

$$
\mathrm{P}\{\theta \geq \pi / 2\}+\mathrm{P}\{\alpha \geq \pi / 2\}+\mathrm{P}\{\beta \geq \pi / 2\}
$$

which becomes

$$
1-\frac{2}{\pi^{2}} \ln (1+\sqrt{2})^{2}=0.8425834778 \ldots
$$

This exact evaluation is new, as far as is known, improving on [23].
Experimental confirmation of the predictions in this essay is available [24].
0.4. Addendum. The density for area of a random triangle inscribing the unit circle is $8 x \Psi\left(4 x^{2}\right)$, where

$$
\begin{gathered}
\Psi(y)=\frac{1}{4 \pi^{3}} \frac{1}{\sqrt{y}}\left\{\Gamma\left(\frac{1}{3}\right)^{3}\left(\frac{4 y}{27}\right)^{-1 / 6}{ }_{2} F_{1}\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{4 y}{27}\right)-\right. \\
\left.3 \Gamma\left(\frac{2}{3}\right)^{3}\left(\frac{4 y}{27}\right)^{1 / 6}{ }_{2} F_{1}\left(\frac{2}{3}, \frac{2}{3}, \frac{4}{3}, \frac{4 y}{27}\right)\right\},
\end{gathered}
$$

${ }_{2} F_{1}$ is the Gauss hypergeometric function [25] and $0<y<27 / 4$. This formula corrects that which appears in Case III of [26]. Random tetrahedra inscribing the unit sphere are the subject of [27]; the motivation is not a volume density but rather a coverage probability.

Random triangles of unit inradius are studied in [28]. The bivariate density for angles is the same as in the unit circumradius scenario; the univariate density for a side is

$$
\frac{16}{\pi^{2}} \frac{x \arctan \left(\frac{x+\sqrt{x^{2}-4}}{2}\right)-x \arctan \left(\frac{x-\sqrt{x^{2}-4}}{2}\right)+\ln \left(\frac{x+\sqrt{x^{2}-4}}{x-\sqrt{x^{2}-4}}\right)}{\left(x^{2}+4\right) x}
$$

for $x>2$. A side has infinite mean and median $5.5482039188 \ldots$. The perimeter also has infinite mean, but nothing else is known precisely.

Further analysis encompassing both unit perimeter triangles/Portnoy's SAS triangles and unit area triangles (à la "throwing paint") appears in [29, 30] with many more constants.

References

[1] E. Seneta and F. Jongmans, The problem of the broken rod and Ernesto Cesàro's early work in probability, Math. Sci. 30 (2005) 67-76; MR2185363 (2006h:60006).
[2] G. S. Goodman, The problem of the broken stick reconsidered, Math. Intelligencer 30 (2008) 43-49; MR2437199 (2010a:60026).
[3] J. J. Hunter, Random triangles, order statistics and singular distributions, Internat. J. Math. Ed. Sci. Tech. 17 (1986) 253-257; MR0827358.
[4] J. Whittaker, Random triangles, Amer. Math. Monthly 97 (1990) 228-230; MR1048437 (91i:60038).
[5] R. Pyke, Spacings, J. Royal Statist. Soc. Ser. B 27 (1965) 395-449; MR0216622 (35 \#7451).
[6] D. E. Dobbs, The average area of a triangle, Mathematics and Computer Education 21 (1987) 178-181.
[7] S. R. Finch, Random triangles, unpublished note (2010).
[8] F. Budden, Some connected problems on probability, Math. Gazette, v. 66 (1982) n. $435,4-10$.
[9] R. K. Guy, There are three times as many obtuse-angled triangles as there are acute-angled ones, Math. Mag. 66 (1993) 175-179; MR1572957.
[10] D. E. Dobbs and J. L Zarestky, Acute random triangles, Nieuw Arch. Wisk. (4) 15 (1997) 141-162; MR1609502.
[11] R. E. Miles, The various aggregates of random polygons determined by random lines in a plane, Adv. Math. 10 (1973) 256-290; MR0319232 (47 \#7777).
[12] J. S. Rao, Some tests based on arc-lengths for the circle, Sankhya Ser. B 38 (1976) 329-338; MR0652731 (58 \#31571).
[13] T. Moore, RE: Random triangle problem (long summary), http://mathforum.org/kb/plaintext.jspa?messageID=86196.
[14] E. E. Moise, Elementary Geometry from an Advanced Standpoint, AddisonWesley, 1963, pp. 192-196; MR0149339 (26 \#6829).
[15] S. Lang and G. Murrow, Geometry: A High School Course, Springer-Verlag, 1983, pp. 192-197.
[16] S. S. Chiu and R. C. Larson, Bertrand's paradox revisited: more lessons about that ambiguous word, random, J. Industrial and Systems Engineering 3 (2009) 1-26; http://jise.ir/article_3997_0.html.
[17] E. W. Weisstein, http://mathworld.wolfram.com/CircleLinePicking.html.
[18] J. Edwards, A Treatise on the Integral Calculus with Applications, Examples and Problems, v. 2, MacMillan and Co., 1922, p. 772.; http://books.google.com/.
[19] R. E. Miles, Isotropic random simplices, Adv. Appl. Probab. 3 (1971) 353-382; MR0309164 (46 \#8274).
[20] E. W. Weisstein, http://mathworld.wolfram.com/CircleTrianglePicking.html.
[21] L. Heinrich, R. Körner, N. Mehlhorn and L. Muche, Numerical and analytical computation of some second-order characteristics of spatial Poisson-Voronoi tessellations, Statistics 31 (1998) 235-259; MR1718316 (2000g:60016).
[22] E. W. Weisstein, http://mathworld.wolfram.com/SphereTetrahedronPicking.html.
[23] S. Portnoy, A Lewis Carroll pillow problem: probability of an obtuse triangle, Statist. Sci. 9 (1994) 279-284; MR1293297 (95h:60003).
[24] S. R. Finch, Simulations in R involving triangles and tetrahedra, http://www.people.fas.harvard.edu/~sfinch/csolve/rsimul.html.
[25] S. R. Finch, Riemann zeta moments, unpublished note (2007).
[26] A. M. Mathai and D. S. Tracy, On a random convex hull in an n-ball, Comm. Statist. A - Theory Methods 12 (1983) 1727-1736; MR0704849 (85c:60013).
[27] S. R. Finch, Covering a sphere with four random circular caps, arXiv:1502.06931.
[28] S. R. Finch, Three random tangents to a circle, arXiv:1101.3931.
[29] S. R. Finch, Uniform triangles with equality constraints, arXiv:1411.5216.
[30] S. R. Finch, Lognormality and triangles of unit area, arXiv:1412.5860.

[^0]: ${ }^{0}$ Copyright © 2011 by Steven R. Finch. All rights reserved.

