Gambler's Ruin

Steven Finch

June 19, 2008
Consider two gamblers A, B with initial integer fortunes a, b. Let $m=a+b$ denote the initial sum of fortunes. In each round of a fair game, one player wins and is paid 1 by the other player:

$$
(a, b) \mapsto\left\{\begin{array}{lc}
(a+1, b-1) & \text { with probability } 1 / 2, \\
(a-1, b+1) & \prime \prime
\end{array}\right.
$$

Assume that rounds are independent for the remainder of this essay. The ruin probability p_{E} for a gambler E is the probability that E 's fortune reaches 0 before it reaches m. For the symmetric 2-player problem,

$$
p_{A}=\frac{b}{a+b}, \quad p_{B}=\frac{a}{a+b}
$$

and this can be proved using either discrete-time (1D random walk) methods or by continuous-time (1D Brownian motion) methods [1].

Before discussing the symmetric 3-player problem (which constitutes the most natural generalization of the preceding), let us examine the following 3-player C centric game [2, 3]:

$$
(a, b, c) \mapsto\left\{\begin{array}{cc}
(a+1, b, c-1) & \text { with probability } 1 / 4 \\
(a-1, b, c+1) & " \prime \\
(a, b+1, c-1) & " \prime \\
(a, b-1, c+1) & " \prime
\end{array}\right.
$$

In each round, C plays against either A or B (with equal probability) and wins 1 or loses 1 (again with equal probability). Let $m=a+b+c$ denote the initial sum of fortunes. By discrete-time methods, it is known that [3]

$$
p_{A}=f(b, a, m)-f(a, a+c, m)
$$

where

$$
f(a, b, m)=\frac{2}{m} \sum_{\substack{1 \leq j<m \\ j \text { odd }}} \sin \left(\frac{a j \pi}{m}\right) \cot \left(\frac{j \pi}{2 m}\right) \frac{\sinh \left((m-b) \varphi_{j, m}\right)}{\sinh \left(m \varphi_{j, m}\right)},
$$

[^0]$$
\varphi_{j, m}=\operatorname{arccosh}(2-\cos (j \pi / m)) .
$$

For example,

$$
p_{A}= \begin{cases}\frac{295476041655}{7166088810082}=0.4122 \ldots & \text { if } a=3, b=3, c=9 \\ \frac{296440261421089}{85926197969298}=0.3449 \ldots & \text { if } a=4, b=4, c=7 \\ \frac{9396287962098}{360352742}=0.2607 \ldots & \text { if } a=5, b=5, c=5\end{cases}
$$

and these numerical results are consistent with [2] (obtained by recurrences). From

$$
p_{A}= \begin{cases}\frac{1}{4}=0.25 & \text { if } a=b=c=1 \\ \frac{17}{66}=0.2575 \ldots & \text { if } a=b=c=2 \\ \frac{365}{1406}=0.2596 \ldots & \text { if } a=b=c=3 \\ \frac{226555}{858958}=0.2603 \ldots & \text { if } a=b=c=4\end{cases}
$$

it is clear that 3-player problems differ from 2-player problems (because scaling is not invariant) and hence 2D Brownian motion methods will only approximate (but not exactly solve) 2 D random walk probabilities. If we allow $m \rightarrow \infty$ in such a way that $a / m \rightarrow \alpha>0$ and $b / m \rightarrow \beta>0$, then [3]

$$
p_{A}=g(\beta, \alpha)-g(\alpha, 1-\beta)
$$

where

$$
g(\alpha, \beta)=4 \sum_{\substack{1 \leq j<\infty \\ j \text { odd }}} \frac{\sin (\alpha j \pi)}{j \pi} \frac{\sinh ((1-\beta) j \pi)}{\sinh (j \pi)}
$$

For example,

$$
p_{A}= \begin{cases}0.2614366507 \ldots & \text { if } \alpha=1 / 3, \beta=1 / 3 \\ 0.4126822642 \ldots & \text { if } \alpha=1 / 5, \beta=1 / 5\end{cases}
$$

in this limiting case. If instead we allow $c \rightarrow \infty$ for fixed a, b, then [2]

$$
p_{A}=\frac{1}{\pi} \int_{0}^{\pi} \frac{\sin (x) \sin (b x)}{1-\cos (y)} e^{-a y} d x
$$

where

$$
\cos (x)+\cosh (y)=2 .
$$

For example,

$$
p_{A}= \begin{cases}1 / 2 & \text { if } a=b ; \\ 0.6976527263 \ldots & \text { if } a=1, b=2 \\ 0.6232861831 \ldots & \text { if } a=2, b=3 \\ 0.7906109052 \ldots & \text { if } a=1, b=3\end{cases}
$$

Let us turn attention to the symmetric 3-player game:

$$
(a, b, c) \mapsto\left\{\begin{array}{cc}
(a+2, b-1, c-1) & \text { with probability } 1 / 3 \\
(a-1, b+2, c-1) & " \prime \\
(a-1, b-1, c+2) & " \prime
\end{array}\right.
$$

One player wins and is paid 1 by each of the other players. A discrete-time solution was outlined in [4], but it is conceptually very different from C-centric game results. For small values of m, some results are known $[5,6]$:

$$
p_{C}= \begin{cases}\frac{2}{3}=0.6666 \ldots & \text { if } a=b=c=1 ; \\ \frac{4}{9}=0.4444 \ldots & \text { if } a=b=c=2 \\ \frac{8}{21}=0.3809 \ldots & \text { if } a=b=c=3 ; \\ \frac{16}{45}=0.3555 \ldots & \text { if } a=b=c=4 ; \\ \frac{848}{2457}=0.3451 \ldots & \text { if } a=b=c=5 \\ \frac{49}{144}=0.3402 \ldots & \text { if } a=b=c=6\end{cases}
$$

Asymptotic numerical evaluation is feasible when modeling the game as Brownian motion in the plane of the equilateral triangle given by

$$
\left\{x\binom{1}{0}+y\binom{-1}{0}+z\binom{0}{\sqrt{3}}: x+y+z=m, x \geq 0, y \geq 0, z \geq 0\right\}
$$

Computing p_{C} corresponds to finding the probability that Brownian motion first exits the triangle along the edge $z=0$, starting from $(x, y, z)=(a, b, c)$. In the event $a=b$, we determine $\eta>0$ so that

$$
\frac{c}{m}=\frac{I\left(\frac{\eta^{2}}{1+\eta^{2}}, \frac{1}{2}, \frac{1}{6}\right)}{I\left(1, \frac{1}{2}, \frac{1}{6}\right)}
$$

where

$$
I(\xi, \alpha, \beta)=\int_{0}^{\xi} t^{\alpha-1}(1-t)^{\beta-1} d t
$$

is the incomplete beta function; it follows that $[7,8,9]$

$$
p_{C}=\frac{1}{\pi}\left(\frac{\pi}{2}-\arctan \left(\frac{\eta^{2}-1}{2 \eta}\right)\right) .
$$

For example,

$$
p_{C}= \begin{cases}1 / 3 & \text { if } a=b=c, \text { that is, } c / m=1 / 3 \\ 0.1421549761 \ldots & \text { if } 2 a=2 b=c, \text { that is, } c / m=1 / 2 \\ 0.5617334934 \ldots & \text { if } a=b=2 c, \text { that is, } c / m=1 / 5\end{cases}
$$

In the event $a \neq b$, no such explicit formulas apply. A purely numerical approach $[8,9,10,11,12,13]$ gives, for example,

$$
p_{A}=0.6542207068 \ldots, \quad p_{B}=0.2923400189 \ldots, \quad p_{C}=0.0534392741 \ldots
$$

when $10 a=5 b=2 c$.
The final game we mention, usually referred to as the 3-tower problem (or Hanoi tower problem), is [8]:

$$
(a, b, c) \mapsto\left\{\begin{array}{cc}
(a-1, b+1, c) & \text { with probability } 1 / 6 \\
(a-1, b, c+1) & \prime \prime \\
(a+1, b-1, c) & \prime \prime \\
(a, b-1, c+1) & \prime \prime \\
(a+1, b, c-1) & \prime \prime \\
(a, b+1, c-1) & \prime \prime
\end{array}\right.
$$

In each round, one player is randomly chosen as the loser and one player (distinct from the first) is randomly chosen as the winner. A study of corresponding ruin probabilities has evidently not been done.

Another quantity of interest is the game duration d, which is the expected number of rounds until one of the gamblers is ruined. For the symmetric 2-player and 3 -player problems, we have $[14,15,16]$

$$
d=a b, \quad d=\frac{a b c}{a+b+c-2}
$$

respectively. For the 3 -tower problem, we have $[15,16,17,18,19]$

$$
d=\frac{3 a b c}{a+b+c} ;
$$

in fact, corresponding variance and probability distribution are also known. No one has apparently calculated d for the 3 -player C-centric game. No simple formulas for d can be anticipated when the number of players exceeds three [17, 20, 21].

Here is an interesting variation on the symmetric 2-player problem:

$$
\left(a_{1}, a_{2}, b_{1}, b_{2}\right) \mapsto\left\{\begin{array}{cc}
\left(a_{1}+1, a_{2}, b_{1}-1, b_{2}\right) & \text { with probability } 1 / 4 \\
\left(a_{1}-1, a_{2}, b_{1}+1, b_{2}\right) & \prime \prime \\
\left(a_{1}, a_{2}+1, b_{1}, b_{2}-1\right) & " \\
\left(a_{1}, a_{2}-1, b_{1}, b_{2}+1\right) & " \prime
\end{array}\right.
$$

The gamblers use two different currencies, say dollars and euros. In each round, a currency and a winner are randomly chosen. When one of the players runs out of
either currency, the game is over. Ruin probabilities p are not known; if $a_{1}=a_{2}=$ $b_{1}=b_{2}=n$, then game durations d are $O\left(n^{2}\right)$ and, more precisely, [22]

$$
\delta=\lim _{n \rightarrow \infty} \frac{d}{n^{2}}=\frac{256}{\pi^{4}} \sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} \frac{(-1)^{k+\ell}}{(2 k+1)(2 \ell+1)\left[(2 k+1)^{2}+(2 \ell+1)^{2}\right]}
$$

Another representation

$$
\delta=2\left(1-\frac{32}{\pi^{3}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{3} \cosh \left[\frac{\pi}{2}(2 k+1)\right]}\right)=1.1787416525 \ldots
$$

is rapidly convergent and possesses a straightforward generalization to an arbitrary number of different currencies.
0.1. Addendum. The following question is similar to our asymptotic analysis of the symmetric 3-player game. Let $a \leq b$. A particle at the center of an $a \times b$ rectangle undergoes Brownian motion until it hits the rectangular boundary. What is the probability that it hits an edge of length a (rather than an edge of length b)? The answer [23, 24]

$$
P(b / a)=\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{2 j+1} \operatorname{sech}\left(\frac{(2 j+1) \pi}{2} \frac{b}{a}\right)
$$

is found via solution of a steady-state heat PDE problem. This has a closed-form expression in certain cases: $[25,26,27]$

$$
P(r)= \begin{cases}\frac{1}{2} & \text { if } r=1, \\ \frac{2}{\pi} \arcsin \left[(\sqrt{2}-1)^{2}\right] & \text { if } r=2, \\ \frac{2}{\pi} \arcsin \left[\left(\sqrt{2}-3^{1 / 4}\right)(\sqrt{3}-1) / 2\right] & \text { if } r=3, \\ \frac{2}{\pi} \arcsin \left[(\sqrt{2}+1)^{2}\left(2^{1 / 4}-1\right)^{4}\right] & \text { if } r=4, \\ \frac{2}{\pi} \arcsin \left[(\sqrt{5}-2)\left(3-2 \cdot 5^{1 / 4}\right) / \sqrt{2}\right] & \text { if } r=5 \\ \frac{2}{\pi} \arcsin \left[(3-2 \sqrt{2})^{2}(2+\sqrt{5})^{2}(\sqrt{10}-3)^{2}\left(5^{1 / 4}-\sqrt{2}\right)^{4}\right] & \text { if } r=10\end{cases}
$$

which are based on singular moduli $k_{1}, k_{4}, k_{9}, k_{16}, k_{25}, k_{100}$ appearing in the theory of elliptic functions. We wonder whether heat PDE-type analysis might assist in the asymptotic study of some 4-player games.

References

[1] H. M. Taylor and S. Karlin, An Introduction to Stochastic Modeling, $3^{\text {rd }}$ ed., Academic Press, 1998, pp. 141-145, 509-514; MR1627763 (99c:60001).
[2] V. D. Barnett, A three-player extension of the gambler's ruin problem, J. Appl. Probab. 1 (1964) 321-334; MR0171330 (30 \#1561).
[3] Y. Itoh and H. Maehara, A variation to the ruin problem, Math. Japon. 47 (1998) 97-102; MR1606328 (98m:60068).
[4] Y. C. Swan and F. T. Bruss, A matrix-analytic approach to the N-player ruin problem, J. Appl. Probab. 43 (2006) 755-766; MR2274798 (2007m:60221).
[5] A. L. Rocha and F. Stern, The gambler's ruin problem with n players and asymmetric play, Statist. Probab. Lett. 44 (1999) 87-95; MR1706327 (2000f:60063).
[6] A. L. Rocha and F. Stern, The asymmetric n-player gambler's ruin problem with equal initial fortunes, Adv. Appl. Math. 33 (2004) 512-530; MR2081041 (2005d:60067).
[7] T. Ferguson, Gambler's ruin in three dimensions, unpublished note (1995), http://www.math.ucla.edu/ ${ }^{\sim}$ tom/papers/unpublished.html.
[8] Y. C. Swan, On Two Unsolved Problems in Probability, Ph.D. thesis, Université Libre de Bruxelles, 2007; http://orbi.ulg.ac.be/handle/2268/188656.
[9] Y. C. Swan and F. T. Bruss, The Schwarz-Christoffel transformation as a tool in applied probability, Math. Sci. 29 (2004) 21-32; MR2073566.
[10] L. N. Trefethen, Numerical computation of the Schwarz-Christoffel transformation, SIAM J. Sci. Statist. Comput. 1 (1980) 82-102; erratum 1 (1980) 302; MR0572542 (81g:30012a) and MR0594762 (81g:30012b).
[11] T. A. Driscoll, Algorithm 756: A MATLAB toolbox for Schwarz-Christoffel mapping, ACM Trans. Math. Software 22 (1996) 168-186.
[12] T. A. Driscoll, Algorithm 843: Improvements to the Schwarz-Christoffel toolbox for MATLAB, ACM Trans. Math. Software 31 (2005) 239-251; MR2266791 (2007f:30001).
[13] T. A. Driscoll, Schwarz-Christoffel Toolbox for MATLAB, http://www.math.udel.edu/~driscoll/SC/.
[14] D. Sandell, A game with three players, Statist. Probab. Lett. 7 (1988) 61-63; MR0996854 (90g:60047).
[15] A. Engel, The computer solves the three tower problem, Amer. Math. Monthly 100 (1993) 62-64.
[16] D. Stirzaker, Tower problems and martingales, Math. Sci. 19 (1994) 52-59; MR1294785 (95h:60068).
[17] F. T. Bruss, G. Louchard and J. W. Turner, On the N-tower problem and related problems, Adv. Appl. Probab. 35 (2003) 278-294; MR1975514 (2004d:60181).
[18] A. Alabert, M. Farré and R. Roy, Exit times from equilateral triangles, Appl. Math. Optim. 49 (2004) 43-53; MR2023644 (2004j:60175).
[19] D. Stirzaker, Three-handed gambler's ruin, Adv. Appl. Probab. 38 (2006) 284286; MR2213975 (2006k:60073).
[20] D. K. Chang, A game with four players, Statist. Probab. Lett. 23 (1995) 111-115; MR1341352 (96g:60055).
[21] D. Cho, A game with N players, J. Korean Statist. Soc. 25 (1996) 185-193; MR1423937 (98a:60051).
[22] A. Kmet and M. Petkovšek, Gambler's ruin problem in several dimensions, Adv. Appl. Math. 28 (2002) 107-118; MR1888839 (2003a:60012).
[23] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, $3^{\text {rd }}$ ed., Oxford Univ. Press, 2001, pp. 554-563; MR2059709 (2004m:60002).
[24] F. Bornemann, Short remarks on the solution of the SIAM 100-digit challenge, https://www-m3.ma.tum.de/Allgemeines/FolkmarBornemann.
[25] J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Wiley, 1987, pp. 69, 139, 162; MR1641658 (99h:11147).
[26] B. C. Berndt, H. H. Chan and L.-C. Zhang, Ramanujan's singular moduli, Ramanujan J. 1 (1997) 53-74; MR1607528 (2001b:11033).
[27] J. Boersma, Solution of Trefethen's problem 10, http://www.win.tue.nl/casa/meetings/special/siamcontest/.

[^0]: ${ }^{0}$ Copyright © 2008 by Steven R. Finch. All rights reserved.

