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Consider two gamblers ,  with initial integer fortunes , . Let  =  + 

denote the initial sum of fortunes. In each round of a fair game, one player wins and

is paid 1 by the other player:

( ) 7→
½
(+ 1 − 1) with probability 12

(− 1 + 1) 00

Assume that rounds are independent for the remainder of this essay. The ruin

probability  for a gambler  is the probability that ’s fortune reaches 0 before

it reaches . For the symmetric 2-player problem,

 =


+ 
  =



+ 

and this can be proved using either discrete-time (1D random walk) methods or by

continuous-time (1D Brownian motion) methods [1].

Before discussing the symmetric 3-player problem (which constitutes the most

natural generalization of the preceding), let us examine the following 3-player -

centric game [2, 3]:

(  ) 7→

⎧⎪⎪⎨⎪⎪⎩
(+ 1  − 1) with probability 14

(− 1  + 1) 00

( + 1 − 1) 00

( − 1 + 1) 00

In each round,  plays against either  or  (with equal probability) and wins 1 or

loses 1 (again with equal probability). Let  =  +  +  denote the initial sum of

fortunes. By discrete-time methods, it is known that [3]

 = ( )− ( + )

where

( ) =
2



X
1≤
 odd

sin

µ
  



¶
cot

µ
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¶
sinh

¡
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¢
sinh

¡
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 = arccosh (2− cos( )) 
For example,

 =

⎧⎨⎩
295476041655
716708481082

= 04122 if  = 3  = 3  = 9;
2964404261421089
8592617979692098

= 03449 if  = 4  = 4  = 7;
93962873
360352742

= 02607 if  = 5  = 5  = 5

and these numerical results are consistent with [2] (obtained by recurrences). From

 =

⎧⎪⎪⎨⎪⎪⎩
1
4
= 025 if  =  =  = 1;

17
66
= 02575 if  =  =  = 2;

365
1406

= 02596 if  =  =  = 3;
223655
858958

= 02603 if  =  =  = 4

it is clear that 3-player problems differ from 2-player problems (because scaling is not

invariant) and hence 2D Brownian motion methods will only approximate (but not

exactly solve) 2D random walk probabilities. If we allow →∞ in such a way that

→   0 and →   0, then [3]

 = ( )− ( 1− )

where

( ) = 4
X

1≤∞
 odd

sin (  )

 

sinh ((1− ) )

sinh ( )


For example,

 =

½
02614366507 if  = 13  = 13;

04126822642 if  = 15  = 15

in this limiting case. If instead we allow →∞ for fixed , , then [2]

 =
1



Z
0

sin() sin( )

1− cos() − 

where

cos() + cosh() = 2

For example,

 =

⎧⎪⎪⎨⎪⎪⎩
12 if  = ;

06976527263 if  = 1  = 2;

06232861831 if  = 2  = 3;

07906109052 if  = 1  = 3
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Let us turn attention to the symmetric 3-player game:

(  ) 7→
⎧⎨⎩ (+ 2 − 1 − 1) with probability 13

(− 1 + 2 − 1) 00

(− 1 − 1 + 2) 00

One player wins and is paid 1 by each of the other players. A discrete-time solution

was outlined in [4], but it is conceptually very different from -centric game results.

For small values of , some results are known [5, 6]:

 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2
3
= 06666 if  =  =  = 1;

4
9
= 04444 if  =  =  = 2;

8
21
= 03809 if  =  =  = 3;

16
45
= 03555 if  =  =  = 4;

848
2457

= 03451 if  =  =  = 5;
49
144
= 03402 if  =  =  = 6

Asymptotic numerical evaluation is feasible when modeling the game as Brownian

motion in the plane of the equilateral triangle given by½


µ
1

0

¶
+ 

µ −1
0

¶
+ 

µ
0√
3

¶
: +  +  =  ≥ 0  ≥ 0  ≥ 0

¾


Computing  corresponds to finding the probability that Brownian motion first exits

the triangle along the edge  = 0, starting from (  ) = (  ). In the event  = ,

we determine   0 so that




=



µ
2

1 + 2

1

2

1

6

¶


µ
1
1

2

1

6

¶
where

(  ) =

Z
0

−1(1− )−1

is the incomplete beta function; it follows that [7, 8, 9]

 =
1



µ


2
− arctan

µ
2 − 1
2

¶¶


For example,

 =

⎧⎨⎩ 13 if  =  = , that is,  = 13;

01421549761 if 2 = 2 = , that is,  = 12;

05617334934 if  =  = 2, that is,  = 15
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In the event  6= , no such explicit formulas apply. A purely numerical approach

[8, 9, 10, 11, 12, 13] gives, for example,

 = 06542207068  = 02923400189  = 00534392741

when 10 = 5 = 2.

The final game we mention, usually referred to as the 3-tower problem (or

Hanoi tower problem), is [8]:

(  ) 7→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(− 1 + 1 ) with probability 16

(− 1  + 1) 00

(+ 1 − 1 ) 00

( − 1 + 1) 00

(+ 1  − 1) 00

( + 1 − 1) 00

In each round, one player is randomly chosen as the loser and one player (distinct

from the first) is randomly chosen as the winner. A study of corresponding ruin

probabilities has evidently not been done.

Another quantity of interest is the game duration , which is the expected

number of rounds until one of the gamblers is ruined. For the symmetric 2-player

and 3-player problems, we have [14, 15, 16]

 =    =
  

+ + − 2
respectively. For the 3-tower problem, we have [15, 16, 17, 18, 19]

 =
3  

+ + 
;

in fact, corresponding variance and probability distribution are also known. No one

has apparently calculated  for the 3-player -centric game. No simple formulas for

 can be anticipated when the number of players exceeds three [17, 20, 21].

Here is an interesting variation on the symmetric 2-player problem:

(1 2 1 2) 7→

⎧⎪⎪⎨⎪⎪⎩
(1 + 1 2 1 − 1 2) with probability 14

(1 − 1 2 1 + 1 2) 00

(1 2 + 1 1 2 − 1) 00

(1 2 − 1 1 2 + 1) 00

The gamblers use two different currencies, say dollars and euros. In each round, a

currency and a winner are randomly chosen. When one of the players runs out of
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either currency, the game is over. Ruin probabilities  are not known; if 1 = 2 =

1 = 2 = , then game durations  are (2) and, more precisely, [22]

 = lim
→∞



2
=
256

4

∞X
=0

∞X
=0

(−1)+
(2 + 1)(2+ 1) [(2 + 1)2 + (2+ 1)2]



Another representation

 = 2

⎛⎝1− 32
3

∞X
=0

(−1)
(2 + 1)3 cosh

h
2
(2 + 1)

i
⎞⎠ = 11787416525

is rapidly convergent and possesses a straightforward generalization to an arbitrary

number of different currencies.

0.1. Addendum. The following question is similar to our asymptotic analysis

of the symmetric 3-player game. Let  ≤ . A particle at the center of an  × 

rectangle undergoes Brownian motion until it hits the rectangular boundary. What

is the probability that it hits an edge of length  (rather than an edge of length )?

The answer [23, 24]

 () =
4



∞X
=0

(−1)
2 + 1

sech

µ
(2 + 1)

2





¶
is found via solution of a steady-state heat PDE problem. This has a closed-form

expression in certain cases: [25, 26, 27]

 () =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2

if  = 1
2

arcsin

£
(
√
2− 1)2¤ if  = 2

2

arcsin

£
(
√
2− 314)(√3− 1)2¤ if  = 3

2

arcsin

£
(
√
2 + 1)2(214 − 1)4¤ if  = 4

2

arcsin

£
(
√
5− 2)(3− 2 · 514)√2¤ if  = 5

2

arcsin

£
(3− 2√2)2(2 +√5)2(√10− 3)2(514 −√2)4¤ if  = 10

which are based on singular moduli 1, 4, 9, 16, 25, 100 appearing in the theory

of elliptic functions. We wonder whether heat PDE-type analysis might assist in the

asymptotic study of some 4-player games.
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