Reuleaux Triangle Constants

Steven Finch

June 5, 2003
Of all planar sets of constant width 1, the Reuleaux triangle (see Figure 1) possesses the least area $[1,2,3,4,5,6,7,8,9,10,11]$ and is the most asymmetric $[12,13,14,15]$. Let us examine certain key phrases in the statement of this theorem more carefully, so that we may introduce several related constants.

A compact convex set $C \subseteq \mathbb{R}^{2}$ is of constant width w if all orthogonal projections of C onto lines have the same length w. More generally, for $C \subseteq \mathbb{R}^{d}, d>2$, the required condition becomes that every pair of parallel supporting $(d-1)$-dimensional planes are at the same distance w apart. (The word breadth was used in [8.4.1] for reasons of convention.) For simplicity, set $w=1$. The first part of the theorem is that the area, $\mu(C)$, of $C \subseteq \mathbb{R}^{2}$ satisfies

$$
\mu(C) \geq \frac{\pi-\sqrt{3}}{2}=0.7047709230 \ldots
$$

It is believed that the volume, $\mu(C)$, of $C \subseteq \mathbb{R}^{3}$ satisfies

$$
\mu(C) \geq\left(\frac{2}{3}-\frac{\sqrt{3}}{4} \arccos \left(\frac{1}{3}\right)\right) \pi=0.4198600459 \ldots
$$

which corresponds to Meisser's tetrahedral analog of the Reuleaux triangle [1, 16]. The best-known lower bound thus far is $(3 \sqrt{6}-7) \pi / 3=0.3649161225 \ldots$; hence there is considerable room for improvement $[8,11]$.

Asymmetry is more difficult to define, primarily because there are competing notions of it! We focus on just two measures of symmetry, called the Kovner-Besicovitch (inner) and Estermann (outer) measures, respectively [14]:

$$
\sigma(C)=\frac{\mu(A)}{\mu(C)}, \quad \tau(C)=\frac{\mu(C)}{\mu(B)}
$$

where A is the largest convex centrally symmetric subset of C and B is the smallest convex centrally symmetric superset of C. The second part of the theorem is that, for $C \subseteq \mathbb{R}^{2}[8,12]$,

$$
\sigma(C) \geq \frac{6 \arccos \left(\frac{5+\sqrt{33}}{12}\right)+\sqrt{3}-\sqrt{11}}{\pi-\sqrt{3}}=0.8403426028 \ldots=1-0.1596573971 \ldots
$$

[^0]

Figure 1: The Reuleaux triangle (solid curves) consists of the vertices of an equilateral triangle (dotted lines) together with three arcs of circles, each circle having a center at one of the vertices and endpoints at the other two vertices.

$$
\tau(C) \geq \frac{\pi-\sqrt{3}}{\sqrt{3}}=0.8137993642=1-0.1862006357 \ldots
$$

The corresponding superset B is a regular hexagon circumscribed about the minimizing Reuleaux triangle C; the subset A is a circular hexagon obtained by reflecting C across its center, calling this new subset C^{\prime}, and then forming $C \cap C^{\prime}$. A higherdimensional analog of this bound is not known.

Here is one more result. What is the set $C \subseteq \mathbb{R}^{2}$ of maximal constant width w that avoids all vertices of the integer square lattice? The answer is a Reuleaux triangle, oriented so that one axis of symmetry lies midway between two parallel lattice edges. Its width $w=1.5449417003 \ldots$ has minimal polynomial [9]

$$
4 x^{6}-12 x^{5}+x^{4}+22 x^{3}-14 x^{2}-4 x+4
$$

We mention that the Reuleaux triangle also appears in conjectures surrounding planar convex translations [8.3.1], maximal planar rendezvous constants [8.21], and exact values of the Bloch-Landau constants [7.1].

[^1]
References

[1] T. Bonnesen and W. Fenchel, Theory of Convex Bodies, BCS Associates, 1987, pp. 135-149; MR 49 \#9736.
[2] W. Blaschke, Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts, Math. Annalen 76 (1915) 81-93.
[3] M. Fujiwara, Analytic proof of Blaschke's theorem on the curve of constant breadth with minimum area, Proc. Imperial Akad. Japan 3 (1927) 307-309; 7 (1931) 300-302.
[4] A. E. Mayer, Der Inhalt der Gleichdicke, Math. Annalen 110 (1934-35) 97-127.
[5] H. G. Eggleston, A proof of Blaschke's theorem on the Reuleaux triangle, Quart. J. Math. 3 (1952) 296-297; MR 14,496a.
[6] H. G. Eggleston, Convexity, Cambridge Univ. Press, 1958, pp. 122-131; MR 23 \#A2123.
[7] A. S. Besicovitch, Minimum area of a set of constant width, Convexity, ed. V. L. Klee, Proc. Symp. Pure Math. 7, Amer. Math. Soc., 1963, pp. 13-14; MR 27 \#1878.
[8] G. D. Chakerian, Sets of constant width, Pacific J. Math. 19 (1966) 13-21; MR 34 \#4986.
[9] G. T. Sallee, The maximal set of constant width in a lattice, Pacific J. Math. 28 (1969) 669-674; MR 39 \#2069.
[10] M. Gardner, Curves of constant width, one of which makes it possible to drill square holes, Sci. Amer., v. 208 (1963) n. 2, 148-156 and v. 208 (1963) n. 3, 154; also in Mathematics: An Introduction to Its Spirit and Use, W. H. Freeman, 1979, pp. 107-111 and 238-239.
[11] G. D. Chakerian and H. Groemer, Convex bodies of constant width, Convexity and Its Applications, ed. P. M. Gruber and J. M. Wills, Birkhäuser, 1983, pp. 49-96; MR 85f:52001.
[12] A. S. Besicovitch, Measure of asymmetry of convex curves. II: Curves of constant width, J. London Math. Soc. 26 (1951) 81-93; MR 12,850g.
[13] H. G. Eggleston, Measure of asymmetry of convex curves of constant width and restricted radii of curvature, Quart. J. Math. 3 (1952) 63-72; MR 13,768d.
[14] B. Grünbaum, Measures of symmetry for convex sets, Convexity, ed. V. L. Klee, Proc. Symp. Pure Math. 7, Amer. Math. Soc., 1963, pp. 233-270; MR 27 \#6187.
[15] H. Groemer and L. J. Wallen, A measure of asymmetry for domains of constant width, Beiträge Algebra Geom. 42 (2001) 517-521.
[16] I. M. Yaglom and V. G. Boltyanskii, Convex Figures, Holt, Rinehart and Winston, 1961, pp. 70-82, 242-264; MR 14,197d.

[^0]: ${ }^{0}$ Copyright © 2003 by Steven R. Finch. All rights reserved.

[^1]: ${ }^{0}$ The figure and its caption are (c) 2000-2003 by MathSoft Engineering \& Education, Inc. and are reprinted with permission.

