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Of all planar sets of constant width 1, the Reuleaux triangle (see Figure 1)
possesses the least area [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and is the most asymmetric
[12, 13, 14, 15]. Let us examine certain key phrases in the statement of this theorem
more carefully, so that we may introduce several related constants.

A compact convex set C ⊆ R
2 is of constant width w if all orthogonal projections

of C onto lines have the same length w. More generally, for C ⊆ R
d, d > 2, the

required condition becomes that every pair of parallel supporting (d−1)-dimensional
planes are at the same distance w apart. (The word breadth was used in [8.4.1] for
reasons of convention.) For simplicity, set w = 1. The first part of the theorem is
that the area, µ(C), of C ⊆ R

2 satisfies

µ(C) ≥ π −
√
3

2
= 0.7047709230....

It is believed that the volume, µ(C), of C ⊆ R
3 satisfies

µ(C) ≥
(
2

3
−
√
3

4
arccos

(
1

3

))
π = 0.4198600459...,

which corresponds to Meisser’s tetrahedral analog of the Reuleaux triangle [1, 16].
The best-known lower bound thus far is (3

√
6−7)π/3 = 0.3649161225...; hence there

is considerable room for improvement [8, 11].
Asymmetry is more difficult to define, primarily because there are competing no-

tions of it! We focus on just two measures of symmetry, called the Kovner-Besicovitch
(inner) and Estermann (outer) measures, respectively [14]:

σ(C) =
µ(A)

µ(C)
, τ (C) =

µ(C)

µ(B)
,

where A is the largest convex centrally symmetric subset of C and B is the smallest
convex centrally symmetric superset of C. The second part of the theorem is that,
for C ⊆ R

2 [8, 12],

σ(C) ≥ 6 arccos(5+
√
33

12
) +
√
3 −

√
11

π −
√
3

= 0.8403426028... = 1− 0.1596573971...,
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Figure 1: The Reuleaux triangle (solid curves) consists of the vertices of an equilateral
triangle (dotted lines) together with three arcs of circles, each circle having a center
at one of the vertices and endpoints at the other two vertices.

τ (C) ≥ π −
√
3√

3
= 0.8137993642 = 1 − 0.1862006357....

The corresponding superset B is a regular hexagon circumscribed about the mini-
mizing Reuleaux triangle C; the subset A is a circular hexagon obtained by reflecting
C across its center, calling this new subset C ′, and then forming C ∩ C ′. A higher-
dimensional analog of this bound is not known.

Here is one more result. What is the set C ⊆ R
2 of maximal constant width w that

avoids all vertices of the integer square lattice? The answer is a Reuleaux triangle,
oriented so that one axis of symmetry lies midway between two parallel lattice edges.
Its width w = 1.5449417003... has minimal polynomial [9]

4x6 − 12x5 + x
4 + 22x3 − 14x2 − 4x+ 4.

Wemention that the Reuleaux triangle also appears in conjectures surrounding planar
convex translations [8.3.1], maximal planar rendezvous constants [8.21], and exact
values of the Bloch-Landau constants [7.1].

0The figure and its caption are c© 2000-2003 by MathSoft Engineering & Education, Inc. and

are reprinted with permission.
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