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Let () denote the number of sign choices + and − such that

±1± 2± 3± · · · ±  = 0

and () denote the number of solutions of

1 · 1 + 2 · 2 + 3 · 3 + · · ·+  ·  = 0

where each  ∈ {−1 0 1}. It can be proved that [1, 2]

() is the coefficient of (+1)2 in the polynomial
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Clearly () = 0 when  ≡ 1 2mod 4. If we think of sign choices as independent
random variables with equal weight on {−1 1}, then
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as →∞. By the Central Limit Theorem,
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which implies that [3, 4]
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where  = 1− (−1) = 2 is the span of the distribution of ±; hence [5, 6]

() ∼
r
6


−322.

In the same way,

() ∼ 1

2
√

−323+1

Let () denote the number of sign choices such that

±1± 2± 3± · · · ±  = ±1± 2± 3± · · · ± 

Here [7]

() is the coefficient of (+1)2 in the polynomial

Y
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and [8, 9, 10, 11]
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Define [12]

() to be the maximal coefficient in the polynomial
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() to be the maximal coefficient in the polynomial
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() to be the maximal coefficient in the polynomial
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The first of these has an immediate combinatorial interpretation: () is the number

of sign choices such that

±1± 2± 3± · · · ±  is 0 or 1

While () seems not to have such a representation, the last sequence satisfies trivially

() = () always.

We look at several more examples. Define [13]

max() to be the maximal coefficient in

Y
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¢
and − min() to be the corresponding minimal coefficient;
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max() to be the maximal coefficient in (−1)
Y

=1

¡
1− 

¢2
and − min() to be the corresponding minimal coefficient.

Only the third of these possesses a clear simplification:

max() is the coefficient of 
(+1)2 in (−1)

Y
=1

¡
1− 

¢2
and the asymptotics

max()
1 ∼ 148 ∼ 2 −029

are of interest [14, 15]. Greater understanding of the other sequences is desired.

0.1. Number Partitioning. What is the number of ways to partition the set

{1 2     } into two subsets whose sums are as nearly equal as possible? If  ≡
0 3mod 4, the answer is (); if  ≡ 1 2mod 4, the answer is ()2. In the former
case, the subsets have the same sum; in the latter, the subsets have sums that differ

by 1 [16, 17]. Partitioning arbitrary sets of  integers, each typically of order 2, is

an NP-complete problem. The ratio  characterizes the difficulty in searching for

a perfect partition (one in which subset sums differ by at most 1). A phase transition

exists for this problem (at = 1, in fact) and perhaps similarly for all NP problems

[17, 18, 19].

As an aside, we observe that

max() is the coefficient of 
(+1)2 in the polynomial

Y
=1

¡
1− 2

¢
for  ≡ 0mod 4, but this fails elsewhere (a conjectural relation involving (+1)

22

coefficients for  ≡ 3mod 4 falls apart when  = 27). It seems to be true that

max()
1 ∼ 121 ∼ 2 −050

as →∞ via multiples of 4.

As another aside, if () is the number of solutions of

1 · 1 + 2 · 2 + 3 · 3 + · · ·+  ·  = −1 · 1 + −2 · 2 + −3 · 3 + · · ·+ − · 
then [20]

() is the coefficient of (+1) in the polynomial
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(in fact, it is the maximal such coefficient)
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and

() ∼ 1

2
√
2

−3232+1

This grows more quickly than (), of course. We wonder what else can be said in

both cases. For example, what is the mean percentage of 0 in {} taken over all
solutions, as  → ∞? It may well be 13 for both, but it may be  13 for one or

the other.

0.2. Addendum. Define a function  : (0 1)→ R by

() =

1Z
0

ln (sin()) 

There is a unique point 0 = 07912265710 at which  attains its maximum value

(0) = −04945295653. Let

 = exp(2(0)) = 03719264606 =
1

4
(14877058426)

 =
4 sin(0)

0

r


−00(0)
= 24057458393

then [21]

max() ∼ 
(4)√



as →∞, making impressively precise our earlier conjecture. An analogous formula
for max() for  ≡ 0mod 4 remains open.
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