Signum Equations and Extremal Coefficients

Steven Finch

February 7, 2009
Let $a(n)$ denote the number of sign choices + and - such that

$$
\pm 1 \pm 2 \pm 3 \pm \cdots \pm n=0
$$

and $b(n)$ denote the number of solutions of

$$
\varepsilon_{1} \cdot 1+\varepsilon_{2} \cdot 2+\varepsilon_{3} \cdot 3+\cdots+\varepsilon_{n} \cdot n=0
$$

where each $\varepsilon_{j} \in\{-1,0,1\}$. It can be proved that $[1,2]$

$$
\begin{aligned}
& a(n) \text { is the coefficient of } x^{n(n+1) / 2} \text { in the polynomial } \prod_{k=1}^{n}\left(1+x^{2 k}\right), \\
& b(n) \text { is the coefficient of } x^{n(n+1) / 2} \text { in the polynomial } \prod_{k=1}^{n}\left(1+x^{k}+x^{2 k}\right) .
\end{aligned}
$$

Clearly $a(n)=0$ when $n \equiv 1,2 \bmod 4$. If we think of sign choices as independent random variables with equal weight on $\{-1,1\}$, then

$$
\mathrm{E}\left(\sum_{k=1}^{n} \pm k\right)=0, \quad \operatorname{Var}\left(\sum_{k=1}^{n} \pm k\right)=\frac{n(n+1)(2 n+1)}{6} \sim \frac{n^{3}}{3}
$$

as $n \rightarrow \infty$. By the Central Limit Theorem,

$$
\mathrm{P}\left(\sqrt{3} n^{-3 / 2} \sum_{k=1}^{n} \pm k \leq x\right) \sim \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-\frac{t^{2}}{2}\right) d t
$$

which implies that $[3,4]$

$$
\left.\mathrm{P}\left(\sum_{k=1}^{n} \pm k=0\right) \sim s \sqrt{\frac{3}{2 \pi}} n^{-3 / 2} \exp \left(-\frac{x^{2}}{2}\right)\right|_{x=0}
$$

[^0]where $s=1-(-1)=2$ is the span of the distribution of \pm; hence $[5,6]$
$$
a(n) \sim \sqrt{\frac{6}{\pi}} n^{-3 / 2} 2^{n}
$$

In the same way,

$$
b(n) \sim \frac{1}{2 \sqrt{\pi}} n^{-3 / 2} 3^{n+1}
$$

Let $c(n)$ denote the number of sign choices such that

$$
\pm 1 \pm 2 \pm 3 \pm \cdots \pm n= \pm 1 \pm 2 \pm 3 \pm \cdots \pm n
$$

Here [7]

$$
c(n) \text { is the coefficient of } x^{n(n+1) / 2} \text { in the polynomial } \prod_{k=1}^{n}\left(1+x^{k}\right)^{2}
$$

and $[8,9,10,11]$

$$
c(n) \sim \sqrt{\frac{3}{\pi}} n^{-3 / 2} 2^{2 n}
$$

Define [12]

$$
\begin{aligned}
& \alpha(n) \text { to be the maximal coefficient in the polynomial } \prod_{k=1}^{n}\left(1+x^{2 k}\right) \\
& \beta(n) \text { to be the maximal coefficient in the polynomial } \prod_{k=1}^{n}\left(1+x^{k}+x^{2 k}\right), \\
& \gamma(n) \text { to be the maximal coefficient in the polynomial } \prod_{k=1}^{n}\left(1+x^{k}\right)^{2} .
\end{aligned}
$$

The first of these has an immediate combinatorial interpretation: $\alpha(n)$ is the number of sign choices such that

$$
\pm 1 \pm 2 \pm 3 \pm \cdots \pm n \text { is } 0 \text { or } 1
$$

While $\beta(n)$ seems not to have such a representation, the last sequence satisfies trivially $\gamma(n)=c(n)$ always.

We look at several more examples. Define [13]
$\lambda_{\max }(n)$ to be the maximal coefficient in $\prod_{k=1}^{n}\left(1-x^{2 k}\right)$
and $-\lambda_{\min }(n)$ to be the corresponding minimal coefficient;

$$
\begin{aligned}
& \mu_{\max }(n) \text { to be the maximal coefficient in }(-1)^{n} \prod_{k=1}^{n}\left(1-x^{k}\right)^{2} \\
& \text { and }-\mu_{\min }(n) \text { to be the corresponding minimal coefficient. }
\end{aligned}
$$

Only the third of these possesses a clear simplification:

$$
\mu_{\max }(n) \text { is the coefficient of } x^{n(n+1) / 2} \text { in }(-1)^{n} \prod_{k=1}^{n}\left(1-x^{k}\right)^{2}
$$

and the asymptotics

$$
\mu_{\max }(n)^{1 / n} \sim 1.48 \ldots \sim 2 e^{-0.29 \ldots}
$$

are of interest $[14,15]$. Greater understanding of the other sequences is desired.
0.1. Number Partitioning. What is the number of ways to partition the set $\{1,2, \ldots, n\}$ into two subsets whose sums are as nearly equal as possible? If $n \equiv$ $0,3 \bmod 4$, the answer is $\alpha(n)$; if $n \equiv 1,2 \bmod 4$, the answer is $\alpha(n) / 2$. In the former case, the subsets have the same sum; in the latter, the subsets have sums that differ by 1 [16, 17]. Partitioning arbitrary sets of n integers, each typically of order 2^{m}, is an NP-complete problem. The ratio m / n characterizes the difficulty in searching for a perfect partition (one in which subset sums differ by at most 1). A phase transition exists for this problem (at $m / n=1$, in fact) and perhaps similarly for all NP problems [17, 18, 19].

As an aside, we observe that

$$
\lambda_{\max }(n) \text { is the coefficient of } x^{n(n+1) / 2} \text { in the polynomial } \prod_{k=1}^{n}\left(1-x^{2 k}\right)
$$

for $n \equiv 0 \bmod 4$, but this fails elsewhere (a conjectural relation involving $x^{(n+1)^{2} / 2}$ coefficients for $n \equiv 3 \bmod 4$ falls apart when $n=27$). It seems to be true that

$$
\lambda_{\max }(n)^{1 / n} \sim 1.21 \ldots \sim 2 e^{-0.50 \ldots}
$$

as $n \rightarrow \infty$ via multiples of 4 .
As another aside, if $d(n)$ is the number of solutions of

$$
\varepsilon_{1} \cdot 1+\varepsilon_{2} \cdot 2+\varepsilon_{3} \cdot 3+\cdots+\varepsilon_{n} \cdot n=\varepsilon_{-1} \cdot 1+\varepsilon_{-2} \cdot 2+\varepsilon_{-3} \cdot 3+\cdots+\varepsilon_{-n} \cdot n
$$

then [20]
$d(n)$ is the coefficient of $x^{n(n+1)}$ in the polynomial $\prod_{k=1}^{n}\left(1+x^{k}+x^{2 k}\right)^{2}$
(in fact, it is the maximal such coefficient)
and

$$
d(n) \sim \frac{1}{2 \sqrt{2 \pi}} n^{-3 / 2} 3^{2 n+1}
$$

This grows more quickly than $b(n)$, of course. We wonder what else can be said in both cases. For example, what is the mean percentage of $0 s$ in $\left\{\varepsilon_{j}\right\}$ taken over all solutions, as $n \rightarrow \infty$? It may well be $1 / 3$ for both, but it may be $>1 / 3$ for one or the other.
0.2. Addendum. Define a function $G:(0,1) \rightarrow \mathbb{R}$ by

$$
G(x)=\int_{0}^{1} \ln (\sin (\pi x t)) d t
$$

There is a unique point $x_{0}=0.7912265710 \ldots$ at which G attains its maximum value $G\left(x_{0}\right)=-0.4945295653 \ldots$. Let

$$
\begin{gathered}
r=\exp \left(2 G\left(x_{0}\right)\right)=0.3719264606 \ldots=\frac{1}{4}(1.4877058426 \ldots), \\
C=\frac{4 \sin \left(\pi x_{0}\right)}{x_{0}} \sqrt{\frac{\pi}{-G^{\prime \prime}\left(x_{0}\right)}}=2.4057458393 \ldots
\end{gathered}
$$

then [21]

$$
\mu_{\max }(n) \sim C \frac{(4 r)^{n}}{\sqrt{n}}
$$

as $n \rightarrow \infty$, making impressively precise our earlier conjecture. An analogous formula for $\lambda_{\max }(n)$ for $n \equiv 0 \bmod 4$ remains open.

References

[1] H. S. Wilf, generatingfunctionology, $2^{\text {nd }}$ ed., Academic Press, 1994, pp. 27-28, 201-202; MR1277813 (95a:05002).
[2] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A007576 and A063865.
[3] B. Fristedt and L. Gray, A Modern Approach to Probability Theory, Birkhäuser, 1997, pp. 282-288; MR1422917 (98e:60002).
[4] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, $2^{\text {nd }}$ ed., Oxford Univ. Press, 1992, pp. 174-193; MR1199812 (93m:60002).
[5] D. Andrica and I. Tomescu, On an integer sequence related to a product of trigonometric functions, and its combinatorial relevance, J. Integer Seq. 5 (2002) 02.2.4; MR1938223 (2003j:05005).
[6] H.-K. Hwang, Review of "On an integer sequence...", MR1938223 (2003j:05005).
[7] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000980 and A047653.
[8] J. H. van Lint, Representation of 0 as $\sum_{k=-N}^{N} \varepsilon_{k} k$, Proc. Amer. Math. Soc. 18 (1967) 182-184; MR0205964 (34 \#5789).
[9] R. C. Entringer, Representation of m as $\sum_{k=-n}^{n} \varepsilon_{k} k$, Canad. Math. Bull. 11 (1968) 289-293; MR0229564 (37 \#5138).
[10] L. Clark, On the representation of m as $\sum_{k=-n}^{n} \varepsilon_{k} k$, Internat. J. Math. Math. Sci. 23 (2000) 77-80; MR1741328 (2001c:11011).
[11] G. Louchard and H. Prodinger, Representations of numbers as $\sum_{k=-n}^{n} \varepsilon_{k} k$: A saddle point approach, Infinity in Logic and Computation, Proc. 2007 Cape Town conf., ed. M. Archibald, V. Brattka, V. Goranko and B. Löwe, Lect. Notes in Comp. Sci. 5489, Springer-Verlag, 2009, pp. 87-96; http://www.ulb.ac.be/di/mcs/louchard/; MR2737664.
[12] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A025591, A039826, and A047653.
[13] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A086376, A086394, A133871, and A156082.
[14] S. Jaidee, S. Stevens and T. Ward, Mertens' theorem for toral automorphisms, Proc. Amer. Math. Soc. 139 (2011) 1819-1824; arXiv:0801.2082; MR2763768.
[15] R. B. Israel and D. W. Cantrell, Re: Bounds for an integral arising in dynamical Mertens, unpublished note (2008).
[16] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A069918.
[17] B. Hayes, The easiest hard problem, Amer. Scientist, v. 90 (2002) n. 2, 113-117.
[18] S. Mertens, A physicist's approach to number partitioning, Theoret. Comput. Sci. 265 (2001) 79-108; MR1848213 (2003j:68068).
[19] C. Borgs, J. Chayes and B. Pittel, Phase transition and finite-size scaling for the integer partitioning problem, Random Structures Algorithms 19 (2001) 247-288; MR1871556 (2002j:90061).
[20] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A156181.
[21] J. Gaither, G. Louchard, S. Wagner and M. D. Ward, Resolution of T. Ward's question and the Israel-Finch conjecture: Precise analysis of an integer sequence arising in dynamics. Combin. Probab. Comput. 24 (2015) 195-215; http://www.stat.purdue.edu/~mdw/papers/paper026.pdf; MR3318044.

[^0]: ${ }^{0}$ Copyright © 2009 by Steven R. Finch. All rights reserved.

