
Planar Harmonic Mappings

Steven Finch

March 29, 2005

Let  denote the open unit disk. A function  :  → C is planar harmonic if
it can be written as () = ( )+  ( ) where  = +   and where  : → R,
 : → R are harmonic, that is, are twice continuously differentiable and obey
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It can be shown that  is planar harmonic if and only if  =  + ̄, where ,  are

analytic on  and the overbar indicates complex conjugation (̄ = −  ).

Of course, a planar harmonic function  is analytic if and only if  and  are

harmonic conjugates, that is, the Cauchy-Riemann equations




=









= −



are satisfied. We are interested, in this essay, in functions  whose real and imaginary

parts are not necessarily conjugate [1].

It turns out that  may be written as a twice continuously differentiable function

of  and ̄; we abuse notation and use the same letter  to represent the new function.

The Cauchy-Riemann equations become a single concise equation:



̄
= 0

and the condition that Laplacians vanish becomes

4
2

 ̄
= 0

Thus the expression  is independent of ̄ for analytic functions  , and the expression

 is independent of ̄ for planar harmonic functions  .

A planar harmonic function  :  → C is a mapping if it is one-to-one. Hence
the class of planar harmonic mappings includes the subclass of univalent functions

we have studied elsewhere [2, 3, 4, 5]. Define also the dilatation of 

 =


̄





which will be needed later.
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0.1. Heinz’s Inequality. We consider here planar harmonic mappings  that

map  onto , with the property that (0) = 0. Heinz [6] proved that¯̄̄̄



(0 0)

¯̄̄̄2
+

¯̄̄̄


̄
(0 0)

¯̄̄̄2
≥ 

for some constant  ≥ 01788 = 035762. The lower bound was improved to 032 =
0642 by Nitsche [7, 8], 04345 = 086912 by de Vries [9], 04476 = 089522 by

Nitsche [10], 06411 = 128222 by de Vries [11], and 06584 = 131682 by Wegmann

[12]. The conjecture that

 =
27

42
= 06839179895 =

1

2
(13678359791)

mentioned by Wegmann [12] seems to have been anticipated by Hopf [13]. A proof of

this conjecture was first given by Hall [1, 14]; the extremal function is achieved via

approximations  →  of a mapping  →  , where  is an inscribed equilateral

triangle, with dilatation () = .

Hall’s proof involves the Fourier coeffients of homeomorphisms  →  of the unit

circle . Some related problems are given in [14]; one of these has been solved [15].

Heinz [16] also proved the inequality¯̄̄̄



( ̄)

¯̄̄̄2
+

¯̄̄̄


̄
( ̄)

¯̄̄̄2
≥ 1

2

which is valid for all  ∈ ; improvements in special cases appear in [17, 18].

0.2. Minimal Surfaces. Consider a minimal surface over the unit disk  of the

form ©
(  ) ∈ R3 :  =  ( ) ( ) ∈ 

ª
and let  denote its Gaussian curvature at the origin. In words, the surface is locally

area-minimizing: Each suitable small piece of it has the least possible area for any

surface spanning the boundary of that piece. By the calculus of variations, we have

the nonlinear PDE"
1 +

µ




¶2#
2

2
− 2







2


+

"
1 +

µ




¶2#
2

2
= 0;

hence the mean curvature of the surface is everywhere zero. A precise determination

of  is difficult — this is called Plateau’s problem — but nature solves it effortlessly,

as can be demonstrated by dipping a bent wire loop in a soap solution [19, 20].
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A consequence of Heinz’s inequality [6] is that

|| ≤ 4

=
162

27
= 58486544599

by Hall’s theorem [14], but this is not sharp. In fact, it is conjectured that [1]

|| ≤ 2

2
= 49348022005;

this has however been proved only in the special case that the minimal surface has a

horizontal tangent plane at the origin [21]. A general proof could be obtained utilizing

the following.

Consider planar harmonic mappings  that map onto, with the two properties

that (0) = 0 and  is the square of an analytic function. (Note that this final

requirement is not met by () = .) Hall [22] recently computed that¯̄̄̄



(0 0)

¯̄̄̄2
+

¯̄̄̄


̄
(0 0)

¯̄̄̄2
≥ ̃

for some constant ̃  + 10−52. It is conjectured that ̃ = 82 (from which 4̃ =
22 would proceed immediately). The expected extremal function is a mapping

 → , where  is an inscribed square, with dilatation () = 2. A proof that

̃ = 82 would be a major step forward in understanding minimal surfaces. See [23]

for more open questions.

0.3. Soap Films. As an aside, we give an elementary problem [24, 25]. Consider

the catenoid-shaped soap film formed between two parallel rings centered at (− 0 0)
and ( 0 0) and of unit radius, where   0 is suitably small. If the rings are slowly

pulled apart (that is, if  increases), there is a certain threshold at which the minimal

surface becomes unstable and is likely to collapse to a disjoint union of two disks.

More precisely, if   0 = 05276973969, then the catenoid corresponds to the

global minimum for surface area while the two-disk configuration corresponds to only

a local minimum. Here 0 and  = 08255174536 are solutions of the simultaneous

equations ⎧⎪⎪⎨⎪⎪⎩
 cosh

µ
0


¶
= 1

22 sinh

µ
0


¶
cosh

µ
0


¶
+ 2 0 = 2

If   0, then the two-disk configuration corresponds to the global minimum while

the catenoid corresponds to only a local minimum for   1 = 06627434193; no
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such catenoid exists for   1. Here 1 and  = 05524341245 are solutions of the

simultaneous equations ⎧⎪⎪⎨⎪⎪⎩
 cosh

µ
1


¶
= 1

cosh

µ
1


¶
− 1


sinh

µ
1


¶
= 0

Interestingly, we have seen the value for 1 before: In [26], it arose in a different

context altogether and was called the Laplace limit constant.
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