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Let , ,  denote the sides of a triangle,  denote the altitude to side , and 

denote the angle opposite . It is known that the inequality [1, 2]

+   + 

is true for all triangles with    − 4 arctan(12) = 12870022175 ≈ 7374◦ but is
false for all triangles with  ≥ 2. For the intermediate range of angles, there are

several ways to express the percentage of triangles satisfying the inequality. Certain

authors [3] assumed that the angles ,  opposite sides ,  are uniformly distributed

on the region

0     0     +   
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for convenience. Supposing 0    , the probability that a random triangle

satisfies the inequality is
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= 0690770

Supposing instead 0    2, the probability is

1− 8
32

= 0921027

(This is why +  + is said to hold for “most” triangles with acute .) Supposing

instead  − 4 arctan(12)    2, the probability is

1− 8

64 arctan(12)2 − 2
= 0398657
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We wonder about the odds corresponding to a fixed angle  in the intermediate range.

This is found by integrating the joint ( )-density(
2

2
if 0    , 0     and +   

0 otherwise

to obtain a marginal density
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the desired probability is hence
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()

Z


2

2
 =
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 − 
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if  =  − 4 arctan(12),
0770368 if  = 512 = 75◦,
0335397 if  = 1124 = 825◦,
0166040 if  = 2348 = 8625◦,
0 if  = 2

where  is the smallest positive solution of the equation
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and  =  −  − .

We additionally wonder about the odds corresponding to a more natural choice

of distribution for , . One difficulty with the preceding is that  =  −  −  is

not uniform; further, while  and  are independent, the same is not true for  and

 or for  and . If the triangle vertices are independent random Gaussian points in

two dimensions, all of which have mean vector zero and covariance matrix identity,

then we have joint ( )-density [4, 5]⎧⎨⎩
6
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if 0    , 0     and +   

0 otherwise.

Integrating with respect to  over [0  − ], a marginal density [4, 6]
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emerges. The desired probability becomes
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2
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=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if  =  − 4 arctan(12),
0662855 if  = 512 = 75◦,
0141612 if  = 1124 = 825◦,
0034758 if  = 2348 = 8625◦,
0 if  = 2

where ,  are exactly as before.

Another benefit of working with 2D Gaussian triangles is that the joint density

for sides , ,  is available [4, 7]:⎧⎪⎪⎨⎪⎪⎩
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0 otherwise.

The (ordinary) triangle inequality gives rise to an expected difference

E(+ − ) =
√
 = 17724538509

and an expected ratio

E

µ
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

¶
≈ 294

For the strong triangle inequality, we utilize a variation of the density function
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Other natural models to consider are 3D Gaussian triangles [4] and broken  triangles

of unit perimeter [8].

Let us turn attention away from a Euclidean setting and toward the hyperbolic

plane. The strong triangle inequality holds for any hyperbolic triangle if    where

 = 11496525950 ≈ 6587◦ is the smallest positive solution of the equation [9]

−1− cos() + sin() + sin
µ


2

¶
sin() = 0

Analogous probabilistic results for uniform angles are uncovered in [10]. An unusual

feature of the latter paper is its careful analysis — numerical results here can be

computed to arbitrary precision and the error can be bounded — we wonder if such

rigor can be feasibly carried over to the Gaussian case.
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