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exists, where  =

P

=0  for each  ≥ 0. Ordinary convergence implies both

Abel convergence and Cesàro convergence. Various converses of this theorem, in

which ordinary convergence is deduced from a summability condition (as above) plus

an additional condition (for example,  → 0 as  → ∞), are called Tauberian
theorems [1, 2, 3].

For notational convenience, when we use the symbol , we mean an arbitrary limit

point of the partial sums {}∞=0. By , we mean a limit point of the power seriesP∞
=0 

 as → 1−. By , we mean a limit point of the partial averages {}∞=0,
where  =

P

=0 ( + 1) for each  ≥ 0.
We start with a Tauberian theorem due to Hadwiger [4, 5] and Agnew [6, 7, 8];

it is quite general since no hypotheses are required! Constants 1 and 2 exist with

the following properties:

• for each , there is a  such that |− | ≤ 1 limsup→∞ ||,
• for each , there is a  such that |− | ≤ 2 limsup→∞ ||.

The least constant 1 is known to be

 + ln(ln(2))− 2Ei(− ln(2)) = 09680448304
where Ei is the exponential integral [9]. The least constant 2 satisfies the inequality

04858 ≤ 2 ≤ 07494386, but its exact value is unknown. Likewise [8, 10, 11],

constants 3 and 4 exist with the following properties:
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• for each , there is a  such that |− | ≤ 3 limsup→∞ ||,
• for each , there is a  such that |− | ≤ 4 limsup→∞ ||.

The least constant 3 is known to be ln(2) = 06931471805 and the least constant

4 is the unique real solution  of the equation

 = −(2) that is,  =
2



³
2

´
= 04745409995

where  is Lambert’s function [14]. See a generalization by Rajagopal [12, 13].

Different constants emerge if we are more restrictive in our choices of ,  and .

For example, the best constant ̃1 such that [15, 16, 17, 18]
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is

 − 2Ei(−1) = 10159835336 = 17517424160− 2
The constant −Ei(−1) = 02193839343 is familiar: when multiplied by , it gives

the Euler-Gompertz constant [9]. In the definition of 4, observe that the subsequence

of {}∞=0 with limit point  may depend on the sequence {}∞=0. If we deny any
knowledge of {}∞=0, then the required constant  0

4 becomes larger. More precisely,

there is an increasing sequence {}∞=0 independent of {}∞=0 such that

limsup
→∞

| −  | ≤  0
4 limsup

→∞
||

and  0
4 = ln(2) is best possible; further, a simple such sequence is  = b2c. Here is

a variation in which we permit knowledge of {}∞=0 only to make a binary decision
at each step. There exist two increasing sequences {}∞=0 and {}∞=0 independent
of {}∞=0 such that

limsup
→∞

| −  | ≤  00
4 limsup

→∞
||

where  is, for each , one of the two integers  and , and the optimal 
00
4 satisfies

4 ≤  00
4 ≤ 056348. The exact value of  00

4 is unknown, but it is believed to be close

to its upper bound. This estimate comes from setting  = b38c,  = b58c and
choosing  appropriately.

Kotnik [19, 20] has computed certain Tauberian constants that occur in number

theory [21, 22, 23]; we hope to discuss these later.
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