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In the complex plane, consider the recursive sequence

 =

µ
1 +

√


¶
−1  ≥ 1

with starting point 0 = 1. The points −1 and  determine a right triangle relative
to the origin 0, with legs 1 and

√
. Clearly the polar coordinates ( ) of  are

given by

 =
√
+ 1  =

⎧⎪⎨⎪⎩
−1X
=0

arctan

µ
1√
 + 1

¶
if  ≥ 1

0 if  = 0

A closed-form expression for  is

 =

Y
=1

µ
1 +

√


¶
 ≥ 1

and determines what is called the discrete spiral of Theodorus.

Davis [1, 2] and Heuvers, Moak & Boursaw [3] independently constructed the

continuous analog of this spiral. A parametric representation is [1, 2]
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and a polar representation is [3]
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Gronau [2] proved that () is the unique solution of the functional equation

() =

µ
1 +

√


¶
(− 1) (0) = 1 0   ∞

such that |()| is increasing and arg(()) is both increasing and continuous.
Among many possible questions, Davis [1] asked: What is the slope of the spiral

at the point 1? Clearly





¯̄̄̄
()=(10)

=




¯̄̄̄
()=(10)

=

∞X
=1

1

32 + 12

which Gautschi [4] evaluated to be 18600250792 This is called the constant of

Theodorus.

Also, what can be said about the growth of  as →∞? For convenience, given
a real number , let {} =  mod 1 denote the fractional part of . Hlawka [5] proved

that

 = 2
√
+ 1 + +

1

6
√
+ 1

+
¡
−32

¢


where the square root spiral constant  = 0 − 1 − 38 = −21577829966
and

0 =
1

8

∞Z
2

{} (1− {}) (3− 2) 1

2(− 1)32 = 00203142484

The numerical estimate of  was obtained by Grünberg [6], correcting an apparent

error in [5].

0.1. Addendum. The series

 =


4
+

∞X
=0

(−1) 
¡
+ 1

2

¢− 1
2+ 1

converges quickly [7], as does

 0 =
∞X

=0


¡
+ 1

2

¢− 1
2+ 1

= −18265078108

(associated with the growth of 0, obtained by replacing arctan by arctanh in the
definition of ). Similarly, the series
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converges quickly (to Theodorus’ constant), as does

∞X
=2

1

( − 1)
√

=

∞X
=1

½


µ
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1

2

¶
− 1
¾
= 21840094702

(obtained by simply replacing + by − and removing the term for  = 1).
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