Constant of Theodorus

Steven Finch

April 9, 2005
In the complex plane, consider the recursive sequence

$$
z_{n}=\left(1+\frac{i}{\sqrt{n}}\right) z_{n-1}, \quad n \geq 1
$$

with starting point $z_{0}=1$. The points z_{n-1} and z_{n} determine a right triangle relative to the origin 0 , with legs 1 and \sqrt{n}. Clearly the polar coordinates $\left(r_{n}, \theta_{n}\right)$ of z_{n} are given by

$$
r_{n}=\sqrt{n+1}, \quad \theta_{n}= \begin{cases}\sum_{j=0}^{n-1} \arctan \left(\frac{1}{\sqrt{j+1}}\right) & \text { if } n \geq 1, \\ 0 & \text { if } n=0\end{cases}
$$

A closed-form expression for z_{n} is

$$
z_{n}=\prod_{k=1}^{n}\left(1+\frac{i}{\sqrt{k}}\right) \quad n \geq 1
$$

and determines what is called the discrete spiral of Theodorus.
Davis [1, 2] and Heuvers, Moak \& Boursaw [3] independently constructed the continuous analog of this spiral. A parametric representation is [1, 2]

$$
\begin{aligned}
f(t) & =\prod_{k=1}^{\infty} \frac{1+\frac{i}{\sqrt{k}}}{1+\frac{i}{\sqrt{k+t}}}, \quad-1<t<\infty \\
& =\sqrt{1+t} \exp \left(i \sum_{k=1}^{\infty}(\arctan (\sqrt{k+t})-\arctan (\sqrt{k}))\right)
\end{aligned}
$$

and a polar representation is [3]

$$
\theta(r)=\sum_{j=0}^{\infty}\left(\arctan \left(\frac{1}{\sqrt{j+1}}\right)-\arctan \left(\frac{1}{\sqrt{j+r^{2}}}\right)\right), \quad r>0 .
$$

[^0]Gronau [2] proved that $f(t)$ is the unique solution of the functional equation

$$
f(t)=\left(1+\frac{i}{\sqrt{t}}\right) f(t-1), \quad f(0)=1, \quad 0<t<\infty
$$

such that $|f(t)|$ is increasing and $\arg (f(t))$ is both increasing and continuous.
Among many possible questions, Davis [1] asked: What is the slope of the spiral at the point 1 ? Clearly

$$
\left.\frac{d y}{d x}\right|_{(x, y)=(1,0)}=\left.\frac{d \theta}{d r}\right|_{(r, \theta)=(1,0)}=\sum_{k=1}^{\infty} \frac{1}{k^{3 / 2}+k^{1 / 2}}
$$

which Gautschi [4] evaluated to be $1.8600250792 \ldots$. This is called the constant of Theodorus.

Also, what can be said about the growth of θ_{n} as $n \rightarrow \infty$? For convenience, given a real number ξ, let $\{\xi\}=\xi \bmod 1$ denote the fractional part of ξ. Hlawka [5] proved that

$$
\theta_{n}=2 \sqrt{n+1}+K+\frac{1}{6 \sqrt{n+1}}+O\left(n^{-3 / 2}\right)
$$

where the square root spiral constant $K=K_{0}-1-3 \pi / 8=-2.1577829966 \ldots$ and

$$
K_{0}=\frac{1}{8} \int_{2}^{\infty}\{x\}(1-\{x\})(3 x-2) \frac{1}{x^{2}(x-1)^{3 / 2}} d x=0.0203142484 \ldots
$$

The numerical estimate of K was obtained by Grünberg [6], correcting an apparent error in [5].
0.1. Addendum. The series

$$
K=\frac{\pi}{4}+\sum_{m=0}^{\infty}(-1)^{m} \frac{\zeta\left(m+\frac{1}{2}\right)-1}{2 m+1}
$$

converges quickly [7], as does

$$
K^{\prime}=\sum_{m=0}^{\infty} \frac{\zeta\left(m+\frac{1}{2}\right)-1}{2 m+1}=-1.8265078108 \ldots
$$

(associated with the growth of θ_{n}^{\prime}, obtained by replacing arctan by arctanh in the definition of θ_{n}). Similarly, the series

$$
\sum_{k=1}^{\infty} \frac{1}{(k+1) \sqrt{k}}=\frac{1}{2}+\sum_{m=1}^{\infty}(-1)^{m+1}\left\{\zeta\left(m+\frac{1}{2}\right)-1\right\}
$$

converges quickly (to Theodorus' constant), as does

$$
\sum_{k=2}^{\infty} \frac{1}{(k-1) \sqrt{k}}=\sum_{m=1}^{\infty}\left\{\zeta\left(m+\frac{1}{2}\right)-1\right\}=2.1840094702 \ldots
$$

(obtained by simply replacing + by - and removing the term for $k=1$).

References

[1] P. J. Davis, Spirals: From Theodorus to Chaos, A K Peters, 1993, pp. 7-11, 37-43, 220; MR1224447 (94e:00001).
[2] D. Gronau, The spiral of Theodorus, Amer. Math. Monthly 111 (2004) 230-237; MR2042127 (2005c:51022).
[3] K. J. Heuvers, D. S. Moak and B. Boursaw, The functional equation of the square root spiral, Functional Equations and Inequalities, ed. T. M. Rassias, Kluwer, 2000, pp. 111-117; MR1792078 (2001k:39033).
[4] W. Gautschi, The spiral of Theodorus, special functions, and numerical analysis, in Davis, op cit., pp. 67-87; MR1224447 (94e:00001).
[5] E. Hlawka, Gleichverteilung und Quadratwurzelschnecke, Monatsh. Math. 89 (1980) 19-44; Engl. transl. in Davis, op cit., pp. 157-167; MR0566292 (81h:10069).
[6] D. Grünberg, Euler-Maclaurin summation examples, unpublished note (2005).
[7] D. Brink, The spiral of Theodorus and sums of zeta-values at the half-integers, Amer. Math. Monthly 119 (2012) 779-786; MR2990936.

[^0]: ${ }^{0}$ Copyright © 2005 by Steven R. Finch. All rights reserved.

