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All infinite-dimensional, separable, complex Hilbert spaces are isometrically iso-

morphic [1]. Fix such a space  for consideration. Let  ,  be self-adjoint linear

operators on  that satisfy the canonical commutation relations

 − = − 
where  is the imaginary unit and  is the identity operator. Such unbounded opera-

tors  ,  are each defined only on a dense linear subspace of , and the intersection

of two dense linear subspaces generally need not be dense. The commutation relations

ensure, however, that

 = −( +)

is well-defined and is a self-adjoint linear operator. Hence we have three operators

 , ,  such that  ++ = 0 and

 − = − =  −   = − 
Let us define a sign function for operators [2]. First, the scalar sign function is

given by

sgn() =

½
1 if Re()  0

−1 if Re()  0

for  ∈ C lying off the imaginary axis. Next, the matrix sign function is given by
sgn() =  sgn(Λ)−1

where  ∈ C× is a Hermitian matrix with no eigenvalues on the imaginary axis.
The unitary × matrix  has column vectors equal to the orthonormal eigenvector

basis of C determined by , and the diagonal × matrix Λ has components equal

to the (real) eigenvalues of  :

 =  Λ−1

By sgn(Λ) is meant the diagonal  ×  matrix with sgn applied component-wise to

Λ. Finally, the operator sign function can be defined similarly by use of the spectral

theorem for unbounded operators (upon which we do not elaborate).

0Copyright c° 2008 by Steven R. Finch. All rights reserved.
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It is remarkable that the operator norm [3]

 = ksgn( ) + sgn() + sgn()k ≈ 12
is independent of the choice of  , ,  . It is a nontrivial constant and a more precise

estimate would be good to see. We will provide a limiting expression for  shortly.

0.1. Schrödinger Representation. Let  = 2(R) and, for wave functions
 ∈ 2(R),

()() = − 


() ()() = ()

These are the momentum and position (or coordinate) operators that arise in quan-

tum mechanics. Further, the time-independent Schrödinger ODE for the quantum

harmonic oscillator [4, 5, 6, 7]:

2

2
+
¡
− 2

¢
 = 0

(in natural units) can be written as

( 2 +2) = 

with eigenvalues  = 2+ 1 for  = 0, 1, 2,    and orthonormal eigenfunctions

() =
¡√

!2
¢−12

−
22()

The Hermite polynomials () satisfy Rodrigues’ formula

() = (−1)2 



³
−

2
´

as well as the recurrence

+1() = 2()− 2−1() 0() = 1 1() = 2

It is well-known that ∞Z
−∞

()
2 = 1

and ()
2 is the probability density for location of a particle in the th energy state

of a harmonic oscillator. Corresponding to any observable physical quantity, there is

a self-adjoint linear operator  , and its expected value for the same particle is

E( ) =

∞Z
−∞

()()()

0The addendum clarifies the meaning of  − = −  and the well-definition of .
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For example, p
Var( )

p
Var() = +

1

2
≥ 1
2

which constitutes the Heisenberg uncertainty principle for a quantum harmonic os-

cillator (in dimensionless variables). The fact that the product of uncertainties is

bounded away from zero can be proved under much more general circumstances.

In the following section, the Laguerre polynomials

() =
1

!






¡
−

¢
are essential. These obey the recurrence

(+ 1)+1() = (2+ 1− )()− −1() 0() = 1 1() = 1− 

and are orthogonal with respect to the exponential distribution Exp(1), just as the

Hermite polynomials are orthogonal with respect to the normal distribution N(0 12).

0.2. Wigner Function. One might believe that, to estimate , all we must do is

to find × matrices  ,  satisfying the commutation relations for arbitrarily large

. Unfortunately no such matrices exist since otherwise we would have

0 = tr( )− tr( ) = tr( − ) = tr(− ) = − 
a contradiction. A different approach must be found.

TheWigner function (or quasi-distribution) offers a way to compute . All

we require are its values on the Hermite eigenfunction basis of 2(R)× 2(R):

( ) =
1

2

∞Z
−∞



µ
+



2

¶
  

µ
− 

2

¶


=

⎧⎨⎩ (−1)


r
!

!
(2̄)−−2||

2


(−)
 (4||2) if  ≤ 

( ) if   

where  = ( +  )
√
2 and ̄ = ( −  )

√
2. See [8, 9, 10, 11] for details. The

generalized Laguerre polynomials are related to the (ordinary) Laguerre polynomials

via

() () = (−1)



+()

The th expected value of any physical quantity ( ) can alternatively be calcu-

lated via

E(( )) =

∞Z
−∞

∞Z
−∞

( )( )  
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For example,

Var( ) =
(−1)


∞Z
−∞

∞Z
−∞

2−(
2+2)(2(

2 + 2))  = +
1

2

andVar() likewise, confirming Heisenberg’s principle. Note that 11(0 0) = −1,
for instance, and thus the Wigner function is not a probability density in the usual

sense (because it may take negative values).

0.3. Operator Norm. The ()th element in the matrix representation of the

operator  = sgn( ) relative to the Hermite eigenfunction basis of 2(R) is

∞Z
−∞

()()() =

∞Z
−∞

∞Z
−∞

sgn()( )  

=

∞Z
−∞

∞Z
0

( )  −
∞Z

−∞

0Z
−∞

( )  

for integers  ≥ 0,  ≥ 0. Changing to polar coordinates

 =  cos()  =  sin()

in the upper half plane, we obtain

∞Z
−∞

∞Z
0

( )   =

Z
0

∞Z
0

( cos()  sin())   

=

Z
0

(−)

∞Z
0

( 0)  

∞Z
−∞

0Z
−∞

( )   =

2Z


∞Z
0

( cos()  sin())   

=

2Z


(−)

∞Z
0

( 0)  



Tsirelson’s Constant 5

When  ≤ ,

∞Z
0

( 0)   =
(−1)


r
!

!

∞Z
0

³√
2
´−

−
2

(−)

¡
22
¢
 

and thus the ()th matrix element simplifies to [12]

−
(−1)+



√
!!

+X
=max{}

(−1)2−(+)2−1 Γ( − (+ )2 + 1)

(+ − )! ( −)! ( − )!

where

 =

Z
0

   −
2Z


   =

½
0 if  ≡ 0mod 2
4 if  ≡ 1mod 2

The norm ksgn( )k of the infinite matrix is found by numerically evaluating the
largest eigenvalue of the upper left  × submatrix of sgn( ) and letting  →∞.
The matrices sgn() and sgn() are obtained similarly, with − replaced by

− and − respectively, where

 =

2Z
−2

   −
32Z
2

   =

⎧⎨⎩ 0 if  ≡ 0mod 2
4 if  ≡ 1mod 4
−4 if  ≡ 3mod 4

and

 =

−4Z
−54

   −
34Z
−4

   =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if  ≡ 0mod 2
2
√
2(−1− ) if  ≡ 1mod 8

2
√
2(−1 + ) if  ≡ 3mod 8

2
√
2(1 + ) if  ≡ 5mod 8

2
√
2(1− ) if  ≡ 7mod 8

Adding the three matrices and taking the largest eigenvalue, we obtain a limiting

value ≈ 12 for the operator norm.
0.4. Quantum Probability. For convenience, define the indicator function

ind() =

½
1 if   0

0 if   0
=
1

2
+
1

2
sgn()

Let  cos() +  sin() denote the coordinate of a classical harmonic oscillator at time

, where ,  are the initial coordinate and momentum, and the period is 2. Choose
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 ∈ {0 23 43} at random. What is the probability that  cos() +  sin()  0?

Clearly this depends on the initial state and is given by

2X
=0

P
¡
 cos() +  sin()  0 |  = 2 

3

¢
P
¡
 = 2 

3

¢
= 1

3

³
ind () + ind

³
−1
2
 +

√
3
2

´
+ ind

³
−1
2
 −

√
3
2

´´

=

½
2
3

if 
6
   

2
or 5

6
   7

6
or − 

2
   −

6


1
3

if − 
6
   

6
or 

2
   5

6
or − 5

6
   −

2

where  is the polar angle of ( ) in the plane. Thus the solution is 1
2
± 1

6
.

Consider now the quantum harmonic oscillator  cos()+ sin() [13]. Answering

the same question reduces to evaluating the spectral bounds of the operator

1
2
 + 1

6

³
sgn () + sgn

³
−1
2
+

√
3
2

´
+ sgn

³
−1
2
−

√
3
2

´´

which turn out to be
1
2
± 1

6
 ≈ 1

2
± 021

The maximum probability ≈ 071 is calculated in [12] and is rigorously proved to

be  1. We wonder if there are other such fascinating numbers in the intersection

between functional analysis and quantum mechanics.

0.5. Generalized Oscillator. The Schrödinger ODE for the anharmonic oscil-

lator:
2

2
+
¡
− 4

¢
 = 0

with quartic potential cannot be solved in closed-form (unlike the harmonic oscilla-

tor). It is worthy to mention that the smallest eigenvalue is

0 = 10603620904

and this constant is now known to over 1000 digits [14, 15, 16, 17]. The corresponding

eigenvalues for the sextic and octic potentials are 11448024537 and 12258201138

[18, 19]. See [20] for mention of the linear potential case.

0.6. Addendum. Tsirelson [3] warns readers that he uses   −  = − 
merely as shorthand for the Weyl relations

exp( ) exp() = exp() exp() exp( ) for all   ∈ R
The consequential independence of ksgn( ) + sgn() + sgn()k of the choice of  ,
,  follows from von Neumann’s theorem [1].
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He also offers the following explanation for [0.2]: “The operator norm is the

supremum of the corresponding quadratic form over the unit sphere. We may choose

an increasing sequence of finite-dimensional subspaces whose union is dense, and

consider the corresponding finite-dimensional suprema; they increase to the infinite-

dimensional supremum. Thus the operator norm is the limit of an increasing sequence

of matrix norms. A good choice of a basis (in the Hilbert space) simplifies the

calculation of the matrices. We use the basis of eigenvectors of the Hamiltonian

(of the oscillator). The calculation of the matrices may be made via the Wigner

function.”
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[16] P. Kóscik and A. Okopińska, Application of the Frobenius method to the

Schrödinger equation for a spherically symmetric potential: an anharmonic os-

cillator, J. Phys. A 38 (2005) 7743—7755; MR2169486 (2006j:81051).

[17] A. J. Zakrzewski, Highly precise solutions of the one-dimensional Schrödinger

equation with an arbitrary potential, Comput. Phys. Comm. 175 (2006) 397—

403; MR2260324 (2007d:81056).
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