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If an integrable function f : R" — R is thought of as the amplitude of a time
signal or space image, then the Fourier transform f of f:

f©) = [ e f(@)da

R»

conveys information on how f(z) is built from sine waves of different frequencies.
Assume that f € L.(R") for some r > 1; equivalently, |f(x)|” is integrable and
decays rapidly enough as |z| — oo so that

1/l = (R/]f(a:)lrda:)r < 0.

Define P, f and Q),f to be the functions

(Pof) (@) = |2t f(2),  (Qu/)(E) = €17/ ().

Heisenberg’s famous inequality arises from the case when p=¢ =1 and r = 2 [1]:
n 2
12z - 1@ 12 = 111

In words, if f(x) is concentrated close to 0 (having a small variance), then f (€)
must be relatively spread out (having a large variance) unless f(x) is zero almost
everywhere. The constant n/(47) is best possible if n = 1: consider functions of the
form aexp(—bz?) for some b > 0 [2].

When f is smooth, it follows that ||V f||y = 27||Q1f||2 where V f is the gradient of
f and |V f| is its Euclidean norm. Therefore Heisenberg’s inequality is an uncertainty
principle in the same sense as expressed in [3].

Here are two sample variations [4, 5]. Let f € L1(R™) N Ly(R") and recall that .J,
is the Bessel function of the first kind [6]. For r > 0, define

J(r)=r"% Ja_1(r)
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and, for y > 0,

K(ol) = 7)+ T 2~ o) it el <,

0 if |z| > y.

gy(z) =

The best constant p,, in the inequality

151l [1Quf1l5 = A3

is achieved when f = g., where ¢ is the smallest positive root of the equation

llgyll2 = 11V gyl

In particular, if n = 1, the equation simplifies to
y(5 — 2y*) tan(y)? + 5(3 — 2y*) tan(y) — 15y = 0

and hence ¢ = 1.7502456171... and p, = 0.4283683675... = 1(0.8567367350...) = 4L

2
The constant M will be useful to us later.

Also, the best constant p, in the inequality

P IE - 1QuAE 2 gl

is achieved when f = g., where ¢ is the smallest positive root of the equation

Vi +4lglla = vV +6[|Vglls,  thatis,  (y* —2n)J'(y) = 2yJ(y).

In particular, if n = 1 (and thus the two exponents are 2/7 and 5/7), the equation
simplifies to

(2 —y*) tan(y) = 2y
and hence ¢ = 2.0815759778 and p,, ' = 4.1731026567.... Closed-form expressions do
not seem to be possible here! This formulation is, in fact, only a special case of a
considerably broader theorem [5].

0.1. Positive Definite Probability Densities. A probability density function
f:R" — R is positive definite if |7, §|

m m
ZZf a:k—aﬁj ZJZk >0
j=1k=1

for all z; € R™, for all z; € C (j = 1,...,n) and for each m > 1, where Z denotes
the complex conjugate of z. Clearly f(—z) = f(x) < f(0) for all x # 0. Let F,
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denote the class of all continuous, positive definite probability density functions on
R". If f € F,, then f is nonnegative and integrable over R": in fact, f/f(O) is itself
a probability density.

Fix, for now, n = 1. Among the well-known members of I} are the normal, £, and
logistic densities. Define a product of variances

47T2HP2{CHl ) HQ2le
f(0)- £(0)

and a greatest lower bound, called Laue’s constant [8]:

M) =

A= g
An immediate consequence of Laeng & Morpurgo’s work [4], for example, is that
A < M < 0.85674. Estimating A has occupied several researchers over several years
9, 10, 11, 12}
0.543 < A < 0.85024
vet a determination of its exact value still seems faraway.
For n > 1, choose an arbitrary unit vector v € R”. If X is a random n-vector

with density f € F,,, let f,, € I} denote the density of the one-dimensional projection
u+ X of X onto u. Then define [11]

A, = inf sup A(f.).

FE€En | |uf|=1

Clearly Ay = A and A, > A, for all n. We have the following estimates [12]:

19+4\[

A, <= < 0.856763... ifn<7,
32( (VB 5 3

12 <, <1272 2 if n > 8.
n 2(n—4)n

which demonstrate that lim,,_,.o A, = 1. These constants deserve to be better known!
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