Uncertainty Inequalities

Steven Finch

November 7, 2003
If an integrable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is thought of as the amplitude of a time signal or space image, then the Fourier transform \hat{f} of f :

$$
\hat{f}(\xi)=\int_{\mathbb{R}^{n}} e^{-2 \pi i \xi \cdot x} f(x) d x
$$

conveys information on how $f(x)$ is built from sine waves of different frequencies. Assume that $f \in L_{r}\left(\mathbb{R}^{n}\right)$ for some $r \geq 1$; equivalently, $|f(x)|^{r}$ is integrable and decays rapidly enough as $|x| \rightarrow \infty$ so that

$$
\|f\|_{r}=\left(\int_{\mathbb{R}^{n}}|f(x)|^{r} d x\right)^{\frac{1}{r}}<\infty
$$

Define $P_{p} f$ and $Q_{q} f$ to be the functions

$$
\left(P_{p} f\right)(x)=|x|^{p} f(x), \quad\left(Q_{q} f\right)(\xi)=|\xi|^{q} \hat{f}(\xi)
$$

Heisenberg's famous inequality arises from the case when $p=q=1$ and $r=2$ [1]:

$$
\left\|P_{1} f\right\|_{2} \cdot\left\|Q_{1} f\right\|_{2} \geq \frac{n}{4 \pi}\|f\|_{2}^{2}
$$

In words, if $f(x)$ is concentrated close to 0 (having a small variance), then $\hat{f}(\xi)$ must be relatively spread out (having a large variance) unless $f(x)$ is zero almost everywhere. The constant $n /(4 \pi)$ is best possible if $n=1$: consider functions of the form $a \exp \left(-b x^{2}\right)$ for some $b>0[2]$.

When f is smooth, it follows that $\|\nabla f\|_{2}=2 \pi\left\|Q_{1} f\right\|_{2}$ where ∇f is the gradient of f and $|\nabla f|$ is its Euclidean norm. Therefore Heisenberg's inequality is an uncertainty principle in the same sense as expressed in [3].

Here are two sample variations $[4,5]$. Let $f \in L_{1}\left(\mathbb{R}^{n}\right) \cap L_{2}\left(\mathbb{R}^{n}\right)$ and recall that J_{ν} is the Bessel function of the first kind [6]. For $r>0$, define

$$
J(r)=r^{1-\frac{n}{2}} J_{\frac{n}{2}-1}(r)
$$

[^0]and, for $y>0$,
\[

g_{y}(x)= $$
\begin{cases}J(|x|)-J(y)+\frac{J^{\prime}(y)}{2 y}\left(y^{2}-|x|^{2}\right) & \text { if }|x|<y \\ 0 & \text { if }|x| \geq y\end{cases}
$$
\]

The best constant μ_{n} in the inequality

$$
\left\|P_{2} f\right\|_{1} \cdot\left\|Q_{1} f\right\|_{2}^{2} \geq \frac{\mu_{n}}{4 \pi^{2}}\|f\|_{1}\|f\|_{2}^{2}
$$

is achieved when $f=g_{c}$, where c is the smallest positive root of the equation

$$
\left\|g_{y}\right\|_{2}=\left\|\nabla g_{y}\right\|_{2}
$$

In particular, if $n=1$, the equation simplifies to

$$
y\left(5-2 y^{2}\right) \tan (y)^{2}+5\left(3-2 y^{2}\right) \tan (y)-15 y=0
$$

and hence $c=1.7502456171 \ldots$ and $\mu_{n}=0.4283683675 \ldots=\frac{1}{2}(0.8567367350 \ldots)=\frac{M}{2}$. The constant M will be useful to us later.

Also, the best constant μ_{n} in the inequality

$$
\left\|P_{2} f\right\|_{1}^{\frac{2}{n+6}} \cdot\left\|Q_{1} f\right\|_{2}^{\frac{n+4}{n+6}} \geq \mu_{n}\|f\|_{2}
$$

is achieved when $f=g_{c}$, where c is the smallest positive root of the equation

$$
\sqrt{n+4}\left\|g_{y}\right\|_{2}=\sqrt{n+6}\left\|\nabla g_{y}\right\|_{2}, \quad \text { that is, } \quad\left(y^{2}-2 n\right) J^{\prime}(y)=2 y J(y)
$$

In particular, if $n=1$ (and thus the two exponents are $2 / 7$ and $5 / 7$), the equation simplifies to

$$
\left(2-y^{2}\right) \tan (y)=2 y
$$

and hence $c=2.0815759778$ and $\mu_{n}^{-1}=4.1731026567 \ldots$. Closed-form expressions do not seem to be possible here! This formulation is, in fact, only a special case of a considerably broader theorem [5].
0.1. Positive Definite Probability Densities. A probability density function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is positive definite if $[7,8]$

$$
\sum_{j=1}^{m} \sum_{k=1}^{m} f\left(x_{k}-x_{j}\right) z_{j} \bar{z}_{k} \geq 0
$$

for all $x_{j} \in \mathbb{R}^{n}$, for all $z_{j} \in \mathbb{C}(j=1, \ldots, n)$ and for each $m \geq 1$, where \bar{z} denotes the complex conjugate of z. Clearly $f(-x)=f(x)<f(0)$ for all $x \neq 0$. Let F_{n}
denote the class of all continuous, positive definite probability density functions on \mathbb{R}^{n}. If $f \in F_{n}$, then \hat{f} is nonnegative and integrable over \mathbb{R}^{n}; in fact, $\hat{f} / f(0)$ is itself a probability density.

Fix, for now, $n=1$. Among the well-known members of F_{1} are the normal, t, and logistic densities. Define a product of variances

$$
\lambda(f)=4 \pi^{2} \frac{\left\|P_{2} f\right\|_{1} \cdot\left\|Q_{2} f\right\|_{1}}{\hat{f}(0) \cdot f(0)}
$$

and a greatest lower bound, called Laue's constant [8]:

$$
\Lambda=\inf _{f \in F_{1}} \lambda(f)
$$

An immediate consequence of Laeng \& Morpurgo's work [4], for example, is that $\Lambda \leq M<0.85674$. Estimating Λ has occupied several researchers over several years [9, 10, 11, 12]:

$$
0.543<\Lambda<0.85024
$$

yet a determination of its exact value still seems faraway.
For $n \geq 1$, choose an arbitrary unit vector $u \in \mathbb{R}^{n}$. If X is a random n-vector with density $f \in F_{n}$, let $f_{u} \in F_{1}$ denote the density of the one-dimensional projection $u \cdot X$ of X onto u. Then define [11]

$$
\Lambda_{n}=\inf _{f \in F_{n}} \sup _{\|u\|=1} \lambda\left(f_{u}\right) .
$$

Clearly $\Lambda_{1}=\Lambda$ and $\Lambda_{n+1} \geq \Lambda_{n}$ for all n. We have the following estimates [12]:

$$
\begin{array}{ll}
\Lambda_{n} \leq \frac{1}{2} \frac{9+4 \sqrt{5}}{(1+\sqrt{5})^{2}}<0.856763 \ldots & \text { if } n \leq 7 \\
1-\frac{3}{n} \leq \Lambda_{n} \leq 1-\frac{n-5}{2(n-4)} \frac{3}{n} & \text { if } n \geq 8
\end{array}
$$

which demonstrate that $\lim _{n \rightarrow \infty} \Lambda_{n}=1$. These constants deserve to be better known!

References

[1] G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl. 3 (1997) 207-238; MR1448337 (98f:42006).
[2] H. Dym and H. P. McKean, Fourier Series and Integrals, Academic Press, 1972, pp. 116-121; MR0442564 (56 \#945).
[3] S. R. Finch, Sobolev isoperimetric constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 219-225.
[4] E. Laeng and C. Morpurgo, An uncertainty inequality involving L^{1} norms, Proc. Amer. Math. Soc. 127 (1999) 3565-3572; MR1621969 (2000b:42006).
[5] C. Morpurgo, Extremals of some uncertainty inequalities, Bull. London Math. Soc. 33 (2001) 52-58; MR1798575 (2001m:26062).
[6] S. R. Finch, Bessel function zeroes, unpublished note (2003).
[7] J. Stewart, Positive definite functions and generalizations, an historical survey, Rocky Mountain J. Math. 6 (1976) 409-434; MR0430674 (55 \#3679).
[8] H.-J. Rossberg, Positive definite probability densities and probability distributions, J. Math. Sci. 76 (1995) 2181-2197; MR1356657 (96h:60027).
[9] I. Dreier, On the uncertainty principle for positive definite densities, Z. Anal. Anwendungen 15 (1996) 1015-1023; MR1422654 (98c:60014).
[10] T. Gneiting, On the uncertainty relation for positive definite probability densities, Statistics 31 (1998) 83-88; MR1625593 (99b:60019).
[11] W. Ehm, T. Gneiting and D. Richards, On the uncertainty relation for positivedefinite probability densities. II, Statistics 33 (1999) 267-286; MR1750252 (2000m:60011).
[12] I. Dreier, W. Ehm, T. Gneiting and D. Richards, Improved bounds for Laue's constant and multivariate extensions, Math. Nachr. 228 (2001), 109-122. MR1845909 (2002e:60021).

[^0]: ${ }^{0}$ Copyright © 2003 by Steven R. Finch. All rights reserved.

