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A fluid is a large collection of small particles. The simplest model for fluids in
D-dimensional space gives rise to the ideal gas law

P —_—
kT P

where P is pressure, 1" is temperature, p is density and x is Boltzmann’s constant.
A more general model takes interparticle interactions of all orders into consideration.

It features the virial series expansion

P [e.e]
il B, pp"
=P + ; D P
where coefficients B,, p depend on the choice of potential function. We will focus on
the hard core potential

oo ifr <1,

0 ifr>1

which implies that two particles have no interaction if their distance > 1 and they
are prohibited from approaching a distance < 1. The particles are called hard rods
if D =1, hard disks if D = 2 and hard spheres if D = 3. A more realistic potential

00 if r <1,
—  ifl<r<1+446,
0 ifr>149

includes a region of attraction as well as a repulsive hard core; this is called the
square-well potential. Other choices exist.
If D =1, then [1, 2, 3]

P P

kT 1—p
that is, B,; = 1 for all n > 1, corresponding to a fluid of hard rods. For D > 2,
we need to discuss nonseparable graphs on n vertices, building on material covered
in [4, 5]. The number of such graphs is 1, 1, 3, 10 for 2 < n < 5. Figure 1 exhibits

the 15 graphs so far mentioned and symbols representing each [6, 7]. English letters
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BI C3 D4 D5 D6
E5 E6o E6/3 E7a E783
E77y ESa E8p3 E9 E10

Figure 1: 15 unlabeled nonseparable graphs on < 5 vertices.
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correspond to the number of vertices; integers correspond to the number of edges;
Greek letters will be explained shortly. The number of labeled nonseparable graphs is
1, 1, 10, 238 for 2 < n < 5. Our interest is in the labeled case. For n = 4, there are
3 graphs of type D4, 6 graphs of type D5 and 1 graph of type D6. For n =5, there
are 12 graphs of type E5, 70 graphs of type E6, 100 graphs of type E7, 45 graphs
of type E8, 10 graphs of type E9 and 1 graph of type £10. Further refinement is
needed for three cases:

70 £6 graphs = 60 E6a graphs + 10 E603 graphs,

100 E7 graphs = 60 E7« graphs + 30 E7( graphs + 10 E7v graphs,
45 E8 graphs = 15 E8« graphs + 30 E8[( graphs.

Let us now illustrate what is called the Mayer formalism for representing virial
coefficients B, p for 2 <n <5 and D > 2. Given n points 71, 72, 73, ..., 7, in RP
with 7 = 0 by convention, define r;; = |7} — 7| and

f(r):{ 51 if r <1,

ifr > 1.

We abuse notation and allow graph symbols to serve as shorthand for certain integrals:

1 . 11
Byp = —E/f(rlz)de = _§ﬂB1’
RD
1 Lo 21
BS,D = —g/ /f(r12)f(7"23)f(7“31)d7“2 dry = —55037
RD RD '
31
Bip = =757 (3D4+ 6D5 + D6)

where

D4=///f(7”12)f(7“23)f(7"34)f(7“41)d7?2dfsdﬁx,

RDP RDP RD

D5=///f(7‘12)f(7“23)f(7"34)f(7“41)f(7“13)df2dFSdﬁx,

RD RD RD

D6=///f(r12)f(7“23)f(7’34)f(7”41)f(7"13)f(7’24)d772d773dﬁl‘

RD RD RD
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E6o E6/3

Figure 2: Selected labeled nonseparable graphs on 5 vertices.

Continuing,

41
Bsp = o (12E5 + 60E6a 4+ 10E6/5 + 60E7a + 30E75 + 10E7~y+
15E8a + 30E84 + 10E9 + E10)

where, for example,

E6a:////f(7‘12)f(7"14)f(7"15)f(T23)f(7"25)f<7‘34)d7?2dF3dF4d7?5,

RD RD RD RD

E6B = / / / /f(rl?»)f(7’14)f(ﬁs)f(7"23)f(7’24)f(7“25)dF2 drs dry drs
RD RD RD RD
and we have used the helpful labels in Figure 2.
From these formulas, we deduce that [8, 9, 10, 11, 12, 13, 14, 15, 16, 17|
7P/2 /2 if D=2,
Bop =m0 = ey _ o
2I' (14 D/2) 2n/3 if D =3;

/3
Bsp  AI'(1+D)2) oDy [ 4/3—3/r if D=2,
Bz, V({1 +D)/2)O/Sm(9) 40 = { 5/8 if D = 3;
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Byp [ 2-1(9/2) (V3/m) +10/x* if D=2,
By, { 2707/4480 + (219/2240) (v/2/7) — (4131/4480) (arcsec(3)/m)  if D = 3;

Bsp [ 0.33355604.. if D=2,
Bi, | 0.110252.. if D= 3.

Elaborating on B; p for D = 3:

E5 40949  E6a 68419  E63 82

BY T 107527 B} 26830°  BY 35

E7a 34133 E75 18583 33291@ ETy 73491

BY ~ 179200 B 5376 800 7 BY 35840
E83 _ 35731 . 1458339 V2 332913 ., 683559 arcsec(3)
B} 6720 627200 w 9800 7 = 35840 7

but exact expressions for

E8a
B ~ 2(0.56965),

2

0
=7 2 30(0.02
5 30(0.02369)

9
~ 3(—0.30490)

]

remain open. Even less is known about Bs p for D = 2:

E 11 E 1 1 11
00 1610 B0 46, 6v3 | 196 _ 17TV3
B; T B; 7r 32 273

Numerical integration is evidently required for the remaining subcases. For example
14, 16],

1 1—r 1 1+4r
2 2 _ 1
E6a = Arm // rsdsdr—|—47r// ) arccos (%)rsdsdr
rs
0 1—r
1
~ (4.46966949)3 5(8 93933899)33,
1 1—r 9 9 1
Erla = 47T2/ /A s)rsdsdr —47?// ) arccos (T—;L) rsdsdr
TS
0 0 0 127

Q

(—3.61831477) By ~ =(—17.23662954) By,

N =
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2 2
2 2 _ 1
E5 = —Eb6a— 4%/ / A(r)A(s) arccos <%) rsdsdr
TS
1 —1+r

ot

Q

(—5.97307832) B ~ =(—2.38923133) B4

[\

where

A(r) = 2arccos (g) - g\/él —r?

is the area of the intersection of two overlapping disks, each of unit radius, with dis-
tance r between their centers. Other symbols require evaluation of trivariate integrals
or worse; computational difficulty seems to increase with the number of edges in the
graph. A remarkable breakthrough was achieved recently [18,; 19], giving F'10 for
D = 2 solely in terms of bivariate integrals and hence to high accuracy:

E10
B4 = 1.8090652427... = 5(0.3618130485...) = 30(0.0603021747...)

Details of this computation are still forthcoming. Analogous estimates for the other
unsolved contributions to Bs o are unavailable; the corresponding difficulties for Bs 3
are insurmountable.

A different normalization for virial coefficients often appears:

I Bn,D

n,D — (LdD/zD)n_l

where wp = 7P/2/T'(1 + D/2), the volume enclosed by the unit sphere in R”. Thus
B22 = 2, B23 = 4, B32 — 16/3 — 43/ and B33 = 10. We merely mention
challengmg research for n > 5 and D > 3, which is beyond the scope of his essay
20, 21, 22, 23, 24, 25, 26, 27, 28, 29].

0.1. Addendum. An expression for the area of the intersection I of three over-
lapping disks, each of unit radius, is found in [30]. Let the centers be (—r/2,0),
(r/2,0) and (z,y), where 0 < r < 2 and the third point is assumed to be inside the
intersection J of the first two disks. Assume further that a nonempty arc of 9.J lies
outside of the third circle, that is, I is nondegenerate. Let

dig =, d13=\/($+7”/2)2+92» d23=\/($—7‘/2)2+y27

T12 = d12/2, 55/13 = d13/2, 95/2’3 = d23/27
Y12 = /1 — d%2/47 ?J’13 =—y1- d%3/47 yg?; =1- d§3/4,
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d2 d2 —d2 d2 d2 _d2
)\/ — 12 + 13 237 M, — /1 . )\/27 A” - 12 + 23 137 /1/” — /1 o AH27

2dyds3 2d19do3
w13 = TN — Yl Y1z = Tt + Yo
T3 = o3\ — yYoapt” + dia, Yoz = 2oy + YN,
C1 = \/(5512 - 9613) + (ylz - y13)2, Co = \/(Iu - $23) + (?J12 - 923)27
cs = /(w13 — w23)? + (Y13 — y23)%.

Then the desired area is

N(x,y,r) = 1\/ Cl + Co + 03)(—61 + Co + 03)(01 — Cy + 03)(01 + Cy — 03) +
3
Z {arcsm( ) - %\/4 - CZ] .
k=1
Define also

uw,r) = VI= 2 —T- A, o(e,r) = /T— @+ /2R,
w(r) = 1 (~r+ VBVI— )

exact formulas for

r/2 u(z,r)
O(r) = A(r)/ / dy dx,
0 0
w(r) u(z,r) 1-7/2 v(@,r)
/ / dydx, (r)= A(r) / / dy dx

w(r) O
exist but are omitted for brevity’s sake. Two additional symbols for D = 2 are
therefore [14]

1

E8p3 = 8 /H(T)A(r)rdr—i-

1 wr) —u(a,r) 1-r/2 v(z,r)
// / (dy3) ()rdydxdr—l—/ / / (dy3) A(r) rdy dz dr+
0 w2 0 w(r)

1 r/2v(z,r) w(r) o(

1
/// (x,y,7 rdydxd?“—i—/ /ny,r)A(r)rdydxdr
0

0 u(z,r) r/2 —u(z,r)

~ (2.810839)B;,
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2
E73 = —E8ﬁ—27T/A(T)37’d7’—
V3
V3 V3 w(r) v(z,r)
8 /go(r)A()rdT+/1/J r)rdr+ // (x,y,r)A(r) rdy dxdr
1 10 (e

~ (—3.202747)B;.
We have not attempted to independently evaluate [16]
E8a

2

9
~ 2.529628 ~ 2(1.264814), 7 ~ —2.160499 ~ 3(—0.720166)
2

except to verify that a certain identity
E63 + ETy+ 3(E78 + E8a+ E8f3) +4FE9 + E10 =0
is satisfied.
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