Virial Coefficients

Steven Finch

January 29, 2016
A fluid is a large collection of small particles. The simplest model for fluids in D-dimensional space gives rise to the ideal gas law

$$
\frac{P}{\kappa T}=\rho
$$

where P is pressure, T is temperature, ρ is density and κ is Boltzmann's constant. A more general model takes interparticle interactions of all orders into consideration. It features the virial series expansion

$$
\frac{P}{\kappa T}=\rho+\sum_{n=2}^{\infty} B_{n, D} \rho^{n}
$$

where coefficients $B_{n, D}$ depend on the choice of potential function. We will focus on the hard core potential

$$
\begin{cases}\infty & \text { if } r \leq 1, \\ 0 & \text { if } r>1\end{cases}
$$

which implies that two particles have no interaction if their distance >1 and they are prohibited from approaching a distance ≤ 1. The particles are called hard rods if $D=1$, hard disks if $D=2$ and hard spheres if $D=3$. A more realistic potential

$$
\begin{cases}\infty & \text { if } r \leq 1 \\ -\varepsilon & \text { if } 1<r \leq 1+\delta \\ 0 & \text { if } r>1+\delta\end{cases}
$$

includes a region of attraction as well as a repulsive hard core; this is called the square-well potential. Other choices exist.

If $D=1$, then $[1,2,3]$

$$
\frac{P}{\kappa T}=\frac{\rho}{1-\rho}
$$

that is, $B_{n, 1}=1$ for all $n \geq 1$, corresponding to a fluid of hard rods. For $D \geq 2$, we need to discuss nonseparable graphs on n vertices, building on material covered in $[4,5]$. The number of such graphs is $1,1,3,10$ for $2 \leq n \leq 5$. Figure 1 exhibits the 15 graphs so far mentioned and symbols representing each [6, 7]. English letters

Figure 1: 15 unlabeled nonseparable graphs on ≤ 5 vertices.
correspond to the number of vertices; integers correspond to the number of edges; Greek letters will be explained shortly. The number of labeled nonseparable graphs is $1,1,10,238$ for $2 \leq n \leq 5$. Our interest is in the labeled case. For $n=4$, there are 3 graphs of type $D 4,6$ graphs of type $D 5$ and 1 graph of type $D 6$. For $n=5$, there are 12 graphs of type $E 5,70$ graphs of type $E 6,100$ graphs of type $E 7,45$ graphs of type $E 8,10$ graphs of type $E 9$ and 1 graph of type $E 10$. Further refinement is needed for three cases:

$$
70 E 6 \text { graphs }=60 E 6 \alpha \text { graphs }+10 E 6 \beta \text { graphs, }
$$

$$
100 E 7 \text { graphs }=60 E 7 \alpha \text { graphs }+30 E 7 \beta \text { graphs }+10 E 7 \gamma \text { graphs, }
$$

$$
45 E 8 \text { graphs }=15 E 8 \alpha \text { graphs }+30 E 8 \beta \text { graphs. }
$$

Let us now illustrate what is called the Mayer formalism for representing virial coefficients $B_{n, D}$ for $2 \leq n \leq 5$ and $D \geq 2$. Given n points $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, \ldots, \vec{r}_{n}$ in \mathbb{R}^{D} with $\vec{r}_{1}=\overrightarrow{0}$ by convention, define $r_{i j}=\left|\vec{r}_{i}-\vec{r}_{j}\right|$ and

$$
f(r)= \begin{cases}-1 & \text { if } r \leq 1 \\ 0 & \text { if } r>1\end{cases}
$$

We abuse notation and allow graph symbols to serve as shorthand for certain integrals:

$$
\begin{gathered}
B_{2, D}=-\frac{1}{2} \int_{\mathbb{R}^{D}} f\left(r_{12}\right) d \vec{r}_{2}=-\frac{1}{2} \frac{1}{1!} B 1 \\
B_{3, D}=-\frac{1}{3} \int_{\mathbb{R}^{D}} \int_{\mathbb{R}^{D}} f\left(r_{12}\right) f\left(r_{23}\right) f\left(r_{31}\right) d \vec{r}_{2} d \vec{r}_{3}=-\frac{2}{3} \frac{1}{2!} C 3, \\
B_{4, D}=-\frac{3}{4} \frac{1}{3!}(3 D 4+6 D 5+D 6)
\end{gathered}
$$

where

$$
\begin{gathered}
D 4=\int_{\mathbb{R}^{D}} \int_{\mathbb{R}^{D}} \int_{\mathbb{R}^{D}} f\left(r_{12}\right) f\left(r_{23}\right) f\left(r_{34}\right) f\left(r_{41}\right) d \vec{r}_{2} d \vec{r}_{3} d \vec{r}_{4}, \\
D 5=\int_{\mathbb{R}^{D}} \int_{\mathbb{R}^{D}} \int_{\mathbb{R}^{D}} f\left(r_{12}\right) f\left(r_{23}\right) f\left(r_{34}\right) f\left(r_{41}\right) f\left(r_{13}\right) d \vec{r}_{2} d \vec{r}_{3} d \vec{r}_{4}, \\
D 6=\int_{\mathbb{R}^{D}} \int_{\mathbb{R}^{D}} \int_{\mathbb{R}^{D}} f\left(r_{12}\right) f\left(r_{23}\right) f\left(r_{34}\right) f\left(r_{41}\right) f\left(r_{13}\right) f\left(r_{24}\right) d \vec{r}_{2} d \vec{r}_{3} d \vec{r}_{4} .
\end{gathered}
$$

[^0]

Figure 2: Selected labeled nonseparable graphs on 5 vertices.
Continuing,

$$
\begin{gathered}
B_{5, D}=-\frac{4}{5} \frac{1}{4!}(12 E 5+60 E 6 \alpha+10 E 6 \beta+60 E 7 \alpha+30 E 7 \beta+10 E 7 \gamma+ \\
15 E 8 \alpha+30 E 8 \beta+10 E 9+E 10)
\end{gathered}
$$

where, for example,

$$
\begin{aligned}
& E 6 \alpha=\int_{\mathbb{R}^{D}} \int_{\mathbb{R}^{D}} \int_{\mathbb{R}^{D}} \int_{\mathbb{R}^{D}} f\left(r_{12}\right) f\left(r_{14}\right) f\left(r_{15}\right) f\left(r_{23}\right) f\left(r_{25}\right) f\left(r_{34}\right) d \vec{r}_{2} d \vec{r}_{3} d \vec{r}_{4} d \vec{r}_{5}, \\
& E 6 \beta=\int_{\mathbb{R}^{D}} \int_{\mathbb{R}^{D}} \int_{\mathbb{R}^{D}} \int_{\mathbb{R}^{D}} f\left(r_{13}\right) f\left(r_{14}\right) f\left(r_{15}\right) f\left(r_{23}\right) f\left(r_{24}\right) f\left(r_{25}\right) d \vec{r}_{2} d \vec{r}_{3} d \vec{r}_{4} d \vec{r}_{5}
\end{aligned}
$$

and we have used the helpful labels in Figure 2.
From these formulas, we deduce that $[8,9,10,11,12,13,14,15,16,17]$

$$
\begin{gathered}
B_{2, D}=\frac{\pi^{D / 2}}{2 \Gamma(1+D / 2)}= \begin{cases}\pi / 2 & \text { if } D=2, \\
2 \pi / 3 & \text { if } D=3\end{cases} \\
\frac{B_{3, D}}{B_{2, D}^{2}}=\frac{4 \Gamma(1+D / 2)}{\sqrt{\pi} \Gamma((1+D) / 2)} \int_{0}^{\pi / 3} \sin (\theta)^{D} d \theta= \begin{cases}4 / 3-\sqrt{3} / \pi & \text { if } D=2, \\
5 / 8 & \text { if } D=3\end{cases}
\end{gathered}
$$

$$
\begin{gathered}
\frac{B_{4, D}}{B_{2, D}^{3}}= \begin{cases}2-(9 / 2)(\sqrt{3} / \pi)+10 / \pi^{2} & \text { if } D=2 \\
2707 / 4480+(219 / 2240)(\sqrt{2} / \pi)-(4131 / 4480)(\operatorname{arcsec}(3) / \pi) & \text { if } D=3\end{cases} \\
\frac{B_{5, D}}{B_{2, D}^{4}}= \begin{cases}0.33355604 \ldots & \text { if } D=2 \\
0.110252 \ldots & \text { if } D=3\end{cases}
\end{gathered}
$$

Elaborating on $B_{5, D}$ for $D=3$:

$$
\begin{gathered}
\frac{E 5}{B_{2}^{4}}=-\frac{40949}{10752}, \quad \frac{E 6 \alpha}{B_{2}^{4}}=\frac{68419}{26880}, \quad \frac{E 6 \beta}{B_{2}^{4}}=\frac{82}{35}, \\
\frac{E 7 \alpha}{B_{2}^{4}}=-\frac{34133}{17920}, \quad \frac{E 7 \beta}{B_{2}^{4}}=-\frac{18583}{5376}+\frac{33291}{9800} \frac{\sqrt{3}}{\pi}, \quad \frac{E 7 \gamma}{B_{2}^{4}}=-\frac{73491}{35840}, \\
\frac{E 8 \beta}{B_{2}^{4}}=-\frac{35731}{6720}+\frac{1458339}{627200} \frac{\sqrt{2}}{\pi}-\frac{33291}{9800} \frac{\sqrt{3}}{\pi}+\frac{683559}{35840} \frac{\operatorname{arcsec}(3)}{\pi}
\end{gathered}
$$

but exact expressions for

$$
\frac{E 8 \alpha}{B_{2}^{4}} \approx 2(0.56965), \quad \frac{E 9}{B_{2}^{4}} \approx 3(-0.30490) \quad \frac{E 10}{B_{2}^{4}} \approx 30(0.02369)
$$

remain open. Even less is known about $B_{5, D}$ for $D=2$:

$$
\frac{E 6 \beta}{B_{2}^{4}}=16-\frac{116}{\pi^{2}}, \quad \frac{E 7 \gamma}{B_{2}^{4}}=-16+\frac{16 \sqrt{3}}{\pi}+\frac{196}{3 \pi^{2}}-\frac{117 \sqrt{3}}{2 \pi^{3}}
$$

Numerical integration is evidently required for the remaining subcases. For example [14, 16],

$$
\begin{aligned}
E 6 \alpha & =4 \pi^{2} \int_{0}^{1} \int_{0}^{1-r} A(r) A(s) r s d s d r+4 \pi \int_{0}^{1} \int_{1-r}^{1+r} A(r) A(s) \arccos \left(\frac{r^{2}+s^{2}-1}{2 r s}\right) r s d s d r \\
& \approx(4.46966949) B_{2}^{4} \approx \frac{1}{2}(8.93933899) B_{2}^{4}
\end{aligned}
$$

$$
\begin{aligned}
E 7 \alpha & =-4 \pi^{2} \int_{0}^{1} \int_{0}^{1-r} A(r) A(s) r s d s d r-4 \pi \int_{0}^{1} \int_{1-r}^{1} A(r) A(s) \arccos \left(\frac{r^{2}+s^{2}-1}{2 r s}\right) r s d s d r \\
& \approx(-3.61831477) B_{2}^{4} \approx \frac{1}{2}(-7.23662954) B_{2}^{4}
\end{aligned}
$$

$$
\begin{aligned}
E 5 & =-E 6 \alpha-4 \pi \int_{1}^{2} \int_{-1+r}^{2} A(r) A(s) \arccos \left(\frac{r^{2}+s^{2}-1}{2 r s}\right) r s d s d r \\
& \approx(-5.97307832) B_{2}^{4} \approx \frac{5}{2}(-2.38923133) B_{2}^{4}
\end{aligned}
$$

where

$$
A(r)=2 \arccos \left(\frac{r}{2}\right)-\frac{r}{2} \sqrt{4-r^{2}}
$$

is the area of the intersection of two overlapping disks, each of unit radius, with distance r between their centers. Other symbols require evaluation of trivariate integrals or worse; computational difficulty seems to increase with the number of edges in the graph. A remarkable breakthrough was achieved recently [18, 19], giving E10 for $D=2$ solely in terms of bivariate integrals and hence to high accuracy:

$$
\frac{E 10}{B_{2}^{4}}=1.8090652427 \ldots=5(0.3618130485 \ldots)=30(0.0603021747 \ldots)
$$

Details of this computation are still forthcoming. Analogous estimates for the other unsolved contributions to $B_{5,2}$ are unavailable; the corresponding difficulties for $B_{5,3}$ are insurmountable.

A different normalization for virial coefficients often appears:

$$
\tilde{B}_{n, D}=\frac{B_{n, D}}{\left(\omega_{D} / 2^{D}\right)^{n-1}}
$$

where $\omega_{D}=\pi^{D / 2} / \Gamma(1+D / 2)$, the volume enclosed by the unit sphere in \mathbb{R}^{D}. Thus $\tilde{B}_{2,2}=2, \tilde{B}_{2,3}=4, \tilde{B}_{3,2}=16 / 3-4 \sqrt{3} / \pi$ and $\tilde{B}_{3,3}=10$. We merely mention challenging research for $n>5$ and $D>3$, which is beyond the scope of his essay [20, 21, 22, 23, 24, 25, 26, 27, 28, 29].
0.1. Addendum. An expression for the area of the intersection I of three overlapping disks, each of unit radius, is found in [30]. Let the centers be $(-r / 2,0)$, $(r / 2,0)$ and (x, y), where $0<r<2$ and the third point is assumed to be inside the intersection J of the first two disks. Assume further that a nonempty arc of ∂J lies outside of the third circle, that is, I is nondegenerate. Let

$$
\begin{gathered}
d_{12}=r, \quad d_{13}=\sqrt{(x+r / 2)^{2}+y^{2}}, \quad d_{23}=\sqrt{(x-r / 2)^{2}+y^{2}}, \\
x_{12}=d_{12} / 2, \quad x_{13}^{\prime}=d_{13} / 2, \quad x_{23}^{\prime \prime}=d_{23} / 2 \\
y_{12}=\sqrt{1-d_{12}^{2} / 4}, \quad y_{13}^{\prime}=-\sqrt{1-d_{13}^{2} / 4}, \quad y_{23}^{\prime \prime}=\sqrt{1-d_{23}^{2} / 4}
\end{gathered}
$$

$$
\begin{gathered}
\lambda^{\prime}=\frac{d_{12}^{2}+d_{13}^{2}-d_{23}^{2}}{2 d_{12} d_{13}}, \quad \mu^{\prime}=\sqrt{1-\lambda^{\prime 2}}, \quad \lambda^{\prime \prime}=-\frac{d_{12}^{2}+d_{23}^{2}-d_{13}^{2}}{2 d_{12} d_{23}}, \quad \mu^{\prime \prime}=\sqrt{1-\lambda^{\prime 2}}, \\
x_{13}=x_{13}^{\prime} \lambda^{\prime}-y_{13}^{\prime} \mu^{\prime}, \quad y_{13}=x_{13}^{\prime} \mu^{\prime}+y_{13}^{\prime} \lambda^{\prime}, \\
x_{23}=x_{23}^{\prime \prime} \lambda^{\prime \prime}-y_{23}^{\prime \prime} \mu^{\prime \prime}+d_{12}, \quad y_{23}=x_{23}^{\prime \prime} \mu^{\prime \prime}+y_{23}^{\prime \prime} \lambda^{\prime \prime}, \\
c_{1}=\sqrt{\left(x_{12}-x_{13}\right)^{2}+\left(y_{12}-y_{13}\right)^{2}}, \quad c_{2}=\sqrt{\left(x_{12}-x_{23}\right)^{2}+\left(y_{12}-y_{23}\right)^{2}}, \\
c_{3}=\sqrt{\left(x_{13}-x_{23}\right)^{2}+\left(y_{13}-y_{23}\right)^{2}} .
\end{gathered}
$$

Then the desired area is

$$
\begin{aligned}
\aleph(x, y, r)= & \frac{1}{4} \sqrt{\left(c_{1}+c_{2}+c_{3}\right)\left(-c_{1}+c_{2}+c_{3}\right)\left(c_{1}-c_{2}+c_{3}\right)\left(c_{1}+c_{2}-c_{3}\right)}+ \\
& \sum_{k=1}^{3}\left[\arcsin \left(\frac{c_{k}}{2}\right)-\frac{c_{k}}{4} \sqrt{4-c_{k}^{2}}\right]
\end{aligned}
$$

Define also

$$
\begin{gathered}
u(x, r)=\sqrt{1-x^{2}}-\sqrt{1-r^{2} / 4}, \quad v(x, r)=\sqrt{1-(x+r / 2)^{2}} \\
w(r)=\frac{1}{4}\left(-r+\sqrt{3} \sqrt{4-r^{2}}\right)
\end{gathered}
$$

exact formulas for

$$
\begin{gathered}
\theta(r)=A(r) \int_{0}^{r / 2} \int_{0}^{u(x, r)} d y d x \\
\varphi(r)=A(r) \int_{0}^{w(r)} \int_{0}^{u(x, r)} d y d x, \quad \psi(r)=A(r) \int_{w(r)}^{1-r / 2} \int_{0}^{v(x, r)} d y d x
\end{gathered}
$$

exist but are omitted for brevity's sake. Two additional symbols for $D=2$ are therefore [14]

$$
\begin{aligned}
E 8 \beta= & 8 \pi\left[\int_{0}^{1} \theta(r) A(r) r d r+\right. \\
& \int_{0}^{1} \int_{r / 2}^{w(r)} \int_{0}^{-u(x, r)} A\left(d_{13}\right) A(r) r d y d x d r+\int_{0}^{1} \int_{w(r)}^{1-r / 2} \int_{0}^{v(x, r)} A\left(d_{13}\right) A(r) r d y d x d r+ \\
& \left.\int_{0}^{1} \int_{0}^{r / 2} \int_{u(x, r)}^{v(x, r)} \aleph(x, y, r) A(r) r d y d x d r+\int_{0}^{1} \int_{r / 2}^{w(r)} \int_{-u(x, r)}^{v(x, r)} \aleph(x, y, r) A(r) r d y d x d r\right] \\
\approx & (2.810839) B_{2}^{4},
\end{aligned}
$$

$$
\begin{aligned}
E 7 \beta= & -E 8 \beta-2 \pi \int_{\sqrt{3}}^{2} A(r)^{3} r d r- \\
& 8 \pi\left[\int_{1}^{\sqrt{3}} \varphi(r) A(r) r d r+\int_{1}^{\sqrt{3}} \psi(r) A(r) r d r+\int_{1}^{\sqrt{3}} \int_{0}^{w(r)} \int_{u(x, r)}^{v(x, r)} \aleph(x, y, r) A(r) r d y d x d r\right] \\
\approx & (-3.202747) B_{2}^{4} .
\end{aligned}
$$

We have not attempted to independently evaluate [16]

$$
\frac{E 8 \alpha}{B_{2}^{4}} \approx 2.529628 \approx 2(1.264814), \quad \frac{E 9}{B_{2}^{4}} \approx-2.160499 \approx 3(-0.720166)
$$

except to verify that a certain identity

$$
E 6 \beta+E 7 \gamma+3(E 7 \beta+E 8 \alpha+E 8 \beta)+4 E 9+E 10=0
$$

is satisfied.

References

[1] M. Bishop, Virial coefficients for one-dimensional hard rods, Amer. J. Phys. 51 (1983) 1151-1152.
[2] M. Baus and J. L. Colot, Thermodynamics and structure of a fluid of hard rods, disks, spheres, or hyperspheres from rescaled virial expansions, Phys. Rev. A 36 (1987) 3912-3925.
[3] G. Labelle, P. Leroux and M. G. Ducharme, Graph weights arising from Mayer's theory of cluster integrals, Sém. Lothar. Combin. 54 (2005/07) B54m; http://www.mat.univie.ac.at/~slc/s/s54leroux.pdf; MR2341745 (2009b:82003).
[4] S. R. Finch, Planar graph growth constants, unpublished note (2004).
[5] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A002218, A013922 and A123534.
[6] R. J. Riddell and G. E. Uhlenbeck, On the theory of the virial development of the equation of state of mono-atomic gases, J. Chem. Phys. 21 (1953) 2056-2064; MR0059207 (15,491g).
[7] J. S. Rowlinson, The fifth virial coefficient of a fluid of hard spheres, Proc. Royal Soc. London A 279 (1964) 147-160.
[8] I. Lyberg, Statistical Mechanics of Hard Spheres and the Two Dimensional Ising Lattice, Ph.D. thesis, State Univ. of New York at Stony Brook, 2007, https://dspace.sunyconnect.suny.edu/handle/1951/43106.
[9] I. Lyberg, The fourth virial coefficient of a fluid of hard spheres in odd dimensions, J. Stat. Phys. 119 (2005) 747-764; arXiv:cond-mat/0410080; MR2151221 (2006c:82061).
[10] N. Clisby, Negative Virial Coefficients for Hard Spheres, Ph.D. thesis, State Univ. of New York at Stony Brook, 2004, http://lattice.complex.unimelb.edu.au/home/documents.
[11] N. Clisby and B. M. McCoy, Analytic calculation of B_{4} for hard spheres in even dimensions, J. Stat. Phys. 114 (2004) 1343-1360; arXiv:cond-mat/0303098; MR2039480 (2004m:82040).
[12] N. Clisby and B. M. McCoy, Ninth and tenth order virial coefficients for hard spheres in D dimensions, J. Stat. Phys. 122 (2006) 15-57; arXiv:condmat/0503525; MR2203780 (2007c:82017).
[13] P. C. Hemmer, Virial coefficients for the hard-core gas in two dimensions, J. Chem. Phys. 42 (1965) 1116-1118; MR0186278 (32 \#3738).
[14] A. P.-H. Yu, The Fifth Virial Coefficient of a Hard Sphere Gas and a Hard Disk Gas, Ph.D. thesis, Rice Univ., 1967, https://scholarship.rice.edu/handle/1911/14414.
[15] S. Kim and D. Henderson, Exact values of two cluster integrals in the fifth virial coefficient for hard spheres, Phys. Lett. A 27 (1968) 378-379.
[16] K. W. Kratky, Fifth virial coefficient for a system of hard disks, Physica A 85 (1976) 607-615.
[17] K. W. Kratky, A new graph expansion of virial coefficients, J. Stat. Phys. 27 (1982) 533-551; MR0659808 (83h:82003).
[18] N. Clisby, The fifth virial coefficient for hard discs, $54^{\text {th }}$ Annual Meeting of the Australian Mathematical Society, 2010, Univ. of Queensland.
[19] N. Clisby, Connections between graph theory and the virial expansion, Discrete Mathematics Research Group meeting, 2012, Monash Univ., http://clisby.net/research/publications/.
[20] F. H. Ree and W. G. Hoover, Fifth and sixth virial coefficients for hard spheres and hard discs, J. Chem. Phys. 40 (1964) 939-950.
[21] F. H. Ree and W. G. Hoover, Seventh virial coefficients for hard spheres and hard discs, J. Chem. Phys. 46 (1967) 4181-4196.
[22] K. W. Kratky, Fifth to tenth virial coefficients of a hard-sphere fluid, Physica A 87 (1977) 584-600.
[23] K. W. Kratky, Overlap graph representation of B_{6} and B_{7}, J. Stat. Phys. 29 (1982) 129-138; MR0676934 (84f:82010).
[24] E. J. Janse van Rensburg, Virial coefficients for hard discs and hard spheres, J. Phys. A 26 (1993) 4805-4818.
[25] E. J. Janse van Rensburg and G. M. Torrie, Estimation of multidimensional integrals: Is Monte Carlo the best method? J. Phys. A 26 (1993) 943-953; MR1211087 (93m:65008).
[26] A. Yu. Vlasov, X.-M. You and A. J. Masters, Monte-Carlo integration for virial coefficients re-visited: Hard convex bodies, spheres with a square-well potential and mixtures of hard spheres, Molecular Phys. 100 (2002) 3313-3324.
[27] S. Labik, J. Kolafa and A. Malijevsky, Virial coefficients of hard spheres and hard disks up to the ninth, Phys. Rev. E 71 (2005) 021105.
[28] C. Zhang and B. M. Pettitt, Computation of high-order virial coefficients in highdimensional hard-sphere fluids by Mayer sampling, Molecular Phys. 112 (2014) 1427-1447.
[29] A. J. Schultz and D. A. Kofke, Fifth to eleventh virial coefficients of hard spheres, Phys. Rev. E 90 (2014) 023301.
[30] M. P. Fewell, Area of common overlap of three circles, Technical Note DSTO-TN-0722, Australian Dept. of Defence, 2006.

[^0]: ${ }^{0}$ Copyright © 2016 by Steven R. Finch. All rights reserved.

