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A fluid is a large collection of small particles. The simplest model for fluids in

-dimensional space gives rise to the ideal gas law




= 

where  is pressure,  is temperature,  is density and  is Boltzmann’s constant.

A more general model takes interparticle interactions of all orders into consideration.

It features the virial series expansion




= +

∞X
=2

 

where coefficients  depend on the choice of potential function. We will focus on

the hard core potential ½ ∞ if  ≤ 1
0 if   1

which implies that two particles have no interaction if their distance  1 and they

are prohibited from approaching a distance ≤ 1. The particles are called hard rods
if  = 1, hard disks if  = 2 and hard spheres if  = 3. A more realistic potential⎧⎨⎩ ∞ if  ≤ 1

− if 1   ≤ 1 + 

0 if   1 + 

includes a region of attraction as well as a repulsive hard core; this is called the

square-well potential. Other choices exist.

If  = 1, then [1, 2, 3]



=



1− 

that is, 1 = 1 for all  ≥ 1, corresponding to a fluid of hard rods. For  ≥ 2,
we need to discuss nonseparable graphs on  vertices, building on material covered

in [4, 5]. The number of such graphs is 1 1 3 10 for 2 ≤  ≤ 5. Figure 1 exhibits
the 15 graphs so far mentioned and symbols representing each [6, 7]. English letters
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Figure 1: 15 unlabeled nonseparable graphs on ≤ 5 vertices.



Virial Coefficients 3

correspond to the number of vertices; integers correspond to the number of edges;

Greek letters will be explained shortly. The number of labeled nonseparable graphs is

1 1 10 238 for 2 ≤  ≤ 5. Our interest is in the labeled case. For  = 4, there are
3 graphs of type 4, 6 graphs of type 5 and 1 graph of type 6. For  = 5, there

are 12 graphs of type 5, 70 graphs of type 6, 100 graphs of type 7, 45 graphs

of type 8, 10 graphs of type 9 and 1 graph of type 10. Further refinement is

needed for three cases:

70 6 graphs = 60 6 graphs + 10 6 graphs,

100 7 graphs = 60 7 graphs + 30 7 graphs + 10 7 graphs,

45 8 graphs = 15 8 graphs + 30 8 graphs.

Let us now illustrate what is called the Mayer formalism for representing virial

coefficients  for 2 ≤  ≤ 5 and  ≥ 2. Given  points 1, 2, 3,   ,  in R

with 1 = 0 by convention, define  = | − | and

() =

½ −1 if  ≤ 1
0 if   1

We abuse notation and allow graph symbols to serve as shorthand for certain integrals:

2 = −1
2

Z
R

(12)2 = −1
2

1

1!
1

3 = −1
3

Z
R

Z
R

(12)(23)(31)2 3 = −2
3

1

2!
3

4 = −3
4

1

3!
(34 + 65 +6)

where

4 =

Z
R

Z
R

Z
R

(12)(23)(34)(41)2 3 4

5 =

Z
R

Z
R

Z
R

(12)(23)(34)(41)(13)2 3 4

6 =

Z
R

Z
R

Z
R

(12)(23)(34)(41)(13)(24)2 3 4
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Figure 2: Selected labeled nonseparable graphs on 5 vertices.

Continuing,

5 = −4
5

1

4!
(125 + 606+ 106 + 607+ 307 + 107+

158+ 308 + 109 +10)

where, for example,

6 =

Z
R

Z
R

Z
R

Z
R

(12)(14)(15)(23)(25)(34)2 3 4 5

6 =

Z
R

Z
R

Z
R

Z
R

(13)(14)(15)(23)(24)(25)2 3 4 5

and we have used the helpful labels in Figure 2.

From these formulas, we deduce that [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]

2 =
2

2Γ (1 +2)
=

½
2 if  = 2

23 if  = 3;

3

2
2

=
4Γ (1 +2)√
Γ ((1 +)2)

3Z
0

sin() =

½
43−√3 if  = 2

58 if  = 3;
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4

3
2

=

½
2− (92) ¡√3¢+ 102 if  = 2

27074480 + (2192240)
¡√
2

¢− (41314480) (arcsec(3)) if  = 3;

5

4
2

=

½
033355604 if  = 2

0110252 if  = 3

Elaborating on 5 for  = 3:

5

4
2

= −40949
10752


6

4
2

=
68419

26880


6

4
2

=
82

35


7

4
2

= −34133
17920


7

4
2

= −18583
5376

+
33291

9800

√
3




7

4
2

= −73491
35840



8

4
2

= −35731
6720

+
1458339

627200

√
2


− 33291
9800

√
3


+
683559

35840

arcsec(3)



but exact expressions for

8

4
2

≈ 2(056965) 9

4
2

≈ 3(−030490) 10

4
2

≈ 30(002369)

remain open. Even less is known about 5 for  = 2:

6

4
2

= 16− 116
2


7

4
2

= −16 + 16
√
3


+
196

32
− 117

√
3

23


Numerical integration is evidently required for the remaining subcases. For example

[14, 16],

6 = 42
1Z
0

1−Z
0

()()    + 4

1Z
0

1+Z
1−

()() arccos

µ
2 + 2 − 1

2 

¶
   

≈ (446966949)4
2 ≈

1

2
(893933899)4

2 

7 = −42
1Z
0

1−Z
0

()()    − 4
1Z
0

1Z
1−

()() arccos

µ
2 + 2 − 1

2 

¶
   

≈ (−361831477)4
2 ≈

1

2
(−723662954)4

2 
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5 = −6− 4
2Z
1

2Z
−1+

()() arccos

µ
2 + 2 − 1

2 

¶
   

≈ (−597307832)4
2 ≈

5

2
(−238923133)4

2

where

() = 2 arccos
³
2

´
− 

2

√
4− 2

is the area of the intersection of two overlapping disks, each of unit radius, with dis-

tance  between their centers. Other symbols require evaluation of trivariate integrals

or worse; computational difficulty seems to increase with the number of edges in the

graph. A remarkable breakthrough was achieved recently [18, 19], giving 10 for

 = 2 solely in terms of bivariate integrals and hence to high accuracy:

10

4
2

= 18090652427 = 5(03618130485) = 30(00603021747)

Details of this computation are still forthcoming. Analogous estimates for the other

unsolved contributions to 52 are unavailable; the corresponding difficulties for 53
are insurmountable.

A different normalization for virial coefficients often appears:

̃ =


(2)
−1

where  = 2Γ(1 +2), the volume enclosed by the unit sphere in R. Thus

̃22 = 2, ̃23 = 4, ̃32 = 163 − 4√3 and ̃33 = 10. We merely mention

challenging research for   5 and   3, which is beyond the scope of his essay

[20, 21, 22, 23, 24, 25, 26, 27, 28, 29].

0.1. Addendum. An expression for the area of the intersection  of three over-

lapping disks, each of unit radius, is found in [30]. Let the centers be (−2 0),
(2 0) and ( ), where 0    2 and the third point is assumed to be inside the

intersection  of the first two disks. Assume further that a nonempty arc of  lies

outside of the third circle, that is,  is nondegenerate. Let

12 =  13 =
p
(+ 2)2 + 2 23 =

p
(− 2)2 + 2

12 = 122 013 = 132 
00
23 = 232

12 =
p
1− 2124 013 = −

p
1− 2134 

00
23 =

p
1− 2234
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0 =
212 + 213 − 223

21213
 0 =

p
1− 02 00 = −

2
12 + 223 − 213
21223

 00 =
p
1− 002

13 = 013
0 − 013

0 13 = 013
0 + 013

0

23 = 0023
00 − 0023

00 + 12 23 = 0023
00 + 0023

00

1 =
p
(12 − 13)2 + (12 − 13)2 2 =

p
(12 − 23)2 + (12 − 23)2

3 =
p
(13 − 23)2 + (13 − 23)2

Then the desired area is

ℵ(  ) =
1

4

p
(1 + 2 + 3)(−1 + 2 + 3)(1 − 2 + 3)(1 + 2 − 3) +

3X
=1

∙
arcsin

³
2

´
− 

4

q
4− 2

¸


Define also

( ) =
√
1− 2 −

p
1− 24 ( ) =

p
1− (+ 2)2

() =
1

4

³
− +

√
3
√
4− 2

´
;

exact formulas for

() = ()

2Z
0

()Z
0

 

() = ()

()Z
0

()Z
0

  () = ()

1−2Z
()

()Z
0

 

exist but are omitted for brevity’s sake. Two additional symbols for  = 2 are

therefore [14]

8 = 8

⎡⎣ 1Z
0

()()  +

1Z
0

()Z
2

−()Z
0

 (13)()     +

1Z
0

1−2Z
()

()Z
0

 (13)()    +

1Z
0

2Z
0

()Z
()

ℵ(  )()     +
1Z
0

()Z
2

()Z
−()

ℵ(  )()    

⎤⎥⎦
≈ (2810839)4

2 
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7 = −8 − 2
2Z

√
3

()3 −

8

⎡⎢⎣
√
3Z

1

()()   +

√
3Z

1

()()   +

√
3Z

1

()Z
0

()Z
()

ℵ(  )()    

⎤⎥⎦
≈ (−3202747)4

2 

We have not attempted to independently evaluate [16]

8

4
2

≈ 2529628 ≈ 2(1264814) 9

4
2

≈ −2160499 ≈ 3(−0720166)

except to verify that a certain identity

6 + 7 + 3(7 +8+8) + 49 +10 = 0

is satisfied.
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