Self-Convolutions

Steven Finch

March 2, 2009
Let f be a square-integrable probability density function supported on a subinterval of \mathbb{R} of length $1 / 2$. Define the self-convolution of f to be

$$
(f * f)(x)=\int_{-\infty}^{\infty} f(t) f(x-t) d t
$$

Thus $f * f$ is the probability density of a sum of two independent random variables, each distributed according to f, and is supported on an interval of length 1 . We are interested in the "size" of $f * f$, measured via both L_{2} and L_{∞} norms. Before doing this, however, let us examine f alone as a preliminary exercise.

For each integer $n \geq 1$, define

$$
g_{n}(x)=\frac{n+1}{n}\left(\frac{1}{\sqrt{2 x}}\right)^{\frac{n-1}{n}}, \quad 0<x<1 / 2
$$

then clearly g_{n} is a probability density for all n,

$$
\left\|g_{n}\right\|_{2}^{2}=\int_{0}^{1 / 2} g_{n}(x)^{2} d x=\frac{(n+1)^{2}}{2 n} \rightarrow \infty
$$

as $n \rightarrow \infty$, and $\left\|g_{n}\right\|_{\infty}=\infty$ always. Consequently

$$
\sup _{f}\|f\|_{2}^{2}=\infty=\sup _{f}\|f\|_{\infty}
$$

Also, suppose that there exists a probability density h on $[0,1 / 2]$ with $\|h\|_{2}^{2}<2$. By the Cauchy-Schwarz inequality,

$$
2=\int_{0}^{1 / 2} h(x) \cdot 2 d x \leq\|h\|_{2} \cdot\|2\|_{2}<\sqrt{2} \cdot \sqrt{2}=2
$$

[^0]which is a contradiction. Consequently
$$
\inf _{f}\|f\|_{2}^{2}=2=\inf _{f}\|f\|_{\infty}
$$

The problem of assessing $f * f$ together is more difficult. Let us first discuss relevant infimums. Martin \& O'Bryant [1, 2] conjectured that

$$
\inf _{f}\|f * f\|_{\infty}=\pi / 2=1.5707963267 \ldots
$$

on the basis of their proof that the left-hand side must exceed $1.262=(2)(0.638)$, plus their observation that $\|g * g\|_{\infty}=\pi / 2$, where

$$
g(x)=\lim _{n \rightarrow \infty} g_{n}(x)=1 / \sqrt{2 x} .
$$

Technically, g is not admissible (since it is not square-integrable). See $[3,4,5]$ for discussion of a similar case.

Martin \& O'Bryant [1] also proved that

$$
\inf _{f}\|f * f\|_{2}^{2} \geq 1.14915=(2)(0.574575)
$$

after elaborate computations. This may be nearly correct, since the probability density

$$
k(x)=\frac{4}{\pi} \frac{1}{\sqrt{8 x(1-2 x)}}, \quad 0<x<1 / 2
$$

satisfies

$$
\|k * k\|_{2}^{2}<1.14939
$$

Again, k is not admissible for technical reasons. No exact formula is even conjectured in this case, which renders it especially interesting!

Here is a problem involving ratios of L_{p} norms. Hölder's inequality gives

$$
\|f\|_{2}^{2} \leq\|f\|_{\infty} \cdot\|f\|_{1}
$$

which is an equality if $f=2$ on $[0,1 / 2]$. Consequently

$$
\inf _{f} \frac{\|f\|_{\infty}}{\|f\|_{2}^{2}}=1
$$

Martin \& O'Bryant [1, 2] conjectured that

$$
\inf _{f} \frac{\|f * f\|_{\infty}}{\|f * f\|_{2}^{2}}=\frac{\pi}{4 \ln (2)}
$$

on the basis, in part, of their observation that $\|g * g\|_{2}^{2}=2 \ln (2)$. This result gives a sense of how large $\|f * f\|_{2}^{2}$ can be, in terms of $\|f * f\|_{\infty}$. No other mention of relevant supremums in the literature has yet been found!
0.1. Addendum. The first conjecture is false: in fact,

$$
1.2748 \leq \inf _{f}\|f * f\|_{\infty} \leq 1.5098
$$

The second conjecture is also false: in fact,

$$
\inf _{f} \frac{\|f * f\|_{\infty}}{\|f * f\|_{2}^{2}} \leq \frac{1}{0.88922 \ldots}<\frac{1}{0.88254 \ldots}=\frac{\pi}{4 \ln (2)}
$$

Such adjustments open up this subject considerably since no one knows what the extremal functions f now might be $[6,7]$. A sequence of lower bounds defined in [8] and numerical optimization (on a simplex in $\mathbb{R}^{2 n}$) suggest an improvement 1.28 over 1.2748 ; the upper bound 1.5098 is believed to be close to the true value.

References

[1] G. Martin and K. O'Bryant, The symmetric subset problem in continuous Ramsey theory, Experiment. Math. 16 (2007) 145-165; arXiv:math/0410004; MR2339272 (2008h:05114).
[2] G. Martin and K. O'Bryant, The supremum of autoconvolutions, with applications to additive number theory, Illinois J. Math. 53 (2009) 219-235; arXiv:0807.5121; MR2584943 (2011c:42021).
[3] B. Green, The number of squares and $B_{h}[g]$ sets, Acta Arith. 100 (2001) 365-390; MR1862059 (2003d:11033).
[4] A. Schinzel and W. M. Schmidt, Comparison of L^{1} - and L^{∞}-norms of squares of polynomials, Acta Arith. 104 (2002) 283-296; MR1914723 (2003f:11035).
[5] J. Cilleruelo and C. Vinuesa, $B_{2}[g]$ sets and a conjecture of Schinzel and Schmidt, Combin. Probab. Comput. 17 (2008) 741-747; MR2463407 (2009h:11037).
[6] M. Matolcsi and C. Vinuesa, Improved bounds on the supremum of autoconvolutions, J. Math. Anal. Appl. 372 (2010) 439-447; arXiv:0907.1379; MR2678874 (2011j:11043).
[7] J. Cilleruelo, I. Ruzsa and C. Vinuesa, Generalized Sidon sets, Adv. Math. 225 (2010) 2786-2807; arXiv:0909.5024; MR2680183 (2011m:11032).
[8] S. Steinerberger, On suprema of autoconvolutions with an application to Sidon sets; arXiv:1403.7988.

[^0]: ${ }^{0}$ Copyright (C) 2009 by Steven R. Finch. All rights reserved.

