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The -vicious walker model of length 2 consists of  lattice paths 1, 2,

  ,  in Z2 where

•  starts at the point (0 ) and ends at the point (2 ) for  = 1     

• all steps are directed northeast or southeast (that is, from ( ) to (+1 +1)
or to (+ 1  − 1))

• if  6= , then  and  never intersect (hence  6=  and  6= , for

instance).

In -star configurations,  = 2 − 2 for each  (with no constraint on ); in -

watermelon configurations,  = 2−2 as well [1, 2]. We often think of the horizontal
axis as time and the vertical axis as space, writing (0) =  and (2) = . A

-watermelon with a wall has the additional property that

• () ≥ 0 for all 0 ≤  ≤ 2, for all .
Gillet [3] demonstrated that lim→∞(b2 c)

√
2 tends to a family of  nonin-

tersecting Brownian excursions, 0 ≤  ≤ 1, as an extension of a principle given in
[4].

The height of a path  in a -watermelon with wall is the maximum value

of () over all . The area under a path  is the area of the polygonal region

determined by the curve  = (), the horizontal line  = 0, and the vertical lines

 = 0,  = 2. In the case  = 2, we will refer to the upper height and upper area

(corresponding to 2) and the lower height and lower area (corresponding to 1).

Counting all 1-watermelons with wall (or Dyck paths) and 2-watermelons with

wall give
(2)!

!(+ 1)!


6(2)!(2+ 2)!

!(+ 1)!(+ 2)!(+ 3)!

possible configurations of length 2, respectively. (The former is the th Catalan

number.) The average height 1() for 1-watermelons with wall satisfies [5, 6]

1() ∼
√
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as →∞ and the average area 1() satisfies [7, 8]

1() ∼
√
32

To go to the average ∞-norm of Brownian excursion, divide the 1 result by
√
2

(space dimension only), yielding
p
2. To go to the average 1-norm, divide the 1

result by (2)32 (both time and space considered), yielding
p
8. Exact formulas

for 1() and 1() are also available [9].

The average upper height 2() for 2-watermelons with wall satisfies

2() ∼ (257758)
√
 ∼ (1822625)

√
2

a new result due to Fulmek [6]. The coefficient can be expressed as a linear combi-

nation of several complicated integrals of theta functions; a certain double Dirichlet

series also plays a role in the proof. Numerical results for 3 ≤  ≤ 5 and for higher
moments were obtained by Feierl [10]. A different method was proposed in [11]. To

go to the average upper ∞-norm of Brownian excursion, divide the 2 result by√
2. An exact formula for 2() is also available [12]. Similar information about

the lower height is not known.

An exact formula for 2() seems to be an open problem. Interestingly, we have

both average upper/lower 1-norm results for Brownian excursion:

5
8

¡√
2− 1¢√ 5

8

√


due to Tracy & Widom [13]. Multiplying each constant by (2)32 therefore provides

the main asymptotic terms for average upper/lower areas under 2-watermelons with

wall. Numerical results in [13] also apply for 3 ≤  ≤ 9. In a study of average upper
1-norms as  → ∞, the constant 17710868074 arises [14, 15] and thus random
matrix theory lurks nearby.

Counting all 1-watermelons without wall (or bilateral Dyck paths) and 2-watermelons

without wall give [16]
(2)!

(!)2


(2)!(2+ 1)!

(!)2((+ 1)!)2

possible configurations of length 2, respectively. (The former is the th central

binomial coefficient.) These tend to Brownian bridges as →∞ [3, 17]. In the same

way, -stars with wall tend to Brownian meanders and -stars without wall tend to

Brownian motions. Corresponding questions about average heights and average areas

(suitably generalized) for  ≥ 2 seem to be unanswered.
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