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We will concentrate on two specific examples, leaving general theory aside. Con-

sider the cycle  (integers modulo ) as our state space. A lazy random walk is

a particle that moves left or right, each with probability 14, or remains motionless

with probability 12. Let us assume that the starting point is at 0. After how many

time steps is the distribution of the particle close to uniform?

The transition matrix , whose th element conveys the odds that the particle is

at site  given it was at site  one step earlier, is
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when  = 6. If we wish information on the odds over a separation of  (positive

integer) steps, then the matrix product  is required.

Let  denote the first row of  and  denote the vector (1 1     1).

Define

() =
1

2
k − k1 

one-half the 1 norm of the vector difference (a sum of absolute values). This is

called the total variation distance. Now define

mix() = min { ≥ 1 : () ≤ } 

mix = mix(14)

the mixing time. For the case  = 6, we compute
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and (3) = 932  028, (4) = 27128  022, therefore mix = 4. Our interest is in

the growth of mix as →∞. It is known that [1]
 2  mix ≤ 2

for some   0; simulation suggests that mix
2 approaches a constant ≈ 00949.

A (non-lazy) random walk is a particle that moves left or right, each with

probability 12. The transition matrix  is
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when  = 7. For technical reaons, we must restrict the cycle length  to be odd

(to ensure aperiodicity). Let  denote the first row of 
 and everything else be as

before. For the case  = 7, we compute
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and (8) = 253896  028, (9) = 223896  024, therefore mix = 9. Again, the

growth rate of mix is quadratic in ; simulation suggests that mix
2 approaches a

constant ≈ 01898. We also mention rigorous bounds [2, 3, 4]µ
22

2
− 1
¶
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which imply that the ratio falls between 014 and 028. Similar bounds could be

determined for the lazy case. The non-lazy mixing time is at most twice the lazy

mixing time, but may be less.

A remarkable equation for the lazy constant  ≈ 00949 was announced in [5]:
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which gives a more accurate estimate  = 00948705678. The justification involved

passage from discrete (-cycle) to continuous (circle), Fourier analysis, and reinter-

pretation of random walks as heat flow. Unfortunately the authors of [5] never
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completed their proof — their draft preprint is no longer available online — and we are

left wondering if/how the challenging details can be brought together. It appears

likely that 2 is the corresponding non-lazy constant, but verification remains open

as well.

Setting  = 14 is, of course, arbitrary. For many Markov chains (not our

two examples), there is a more natural choice of threshold. In such scenarios, the

variation distance () is fairly large and essentially flat for small , then abruptly

changes character and decays exponentially to zero as  increases beyond a certain

point. It is believed that such cut-off phenomena are widespread, although they have

been rigorously ascertained only sporadically (for example, riffle shuffles of 52 cards

[6, 7, 8, 9]). How are the group theoretic properties of the state space related to the

existence or non-existence of a cut-off? This is a difficult question; we must often

settle for the order of magnitude (as a function of ) of a possible threshold. Only

rarely are these results so accurate as to yield tight bounds on the level of a constant.

0.1. Addendum. On the one hand, given any   0, the equation for mix()
2

in the limit as →∞ is the same as that for  except 14 on the right-hand side is

replaced by . For example, if  = 110, then the limit is 01875465011.

On the other hand, consider a random walk in which a particle moves left or right,

each with probability 13, or remains motionless with probability 13. What does

the heuristic in [5] predict for the value of mix()
2? Intuition suggests that the

variance of the walk generator is key. The walk with probabilities {14 12 14} has
variance 12; the walk with probabilities {13 13 13} has variance 23; dividing
12 by 23 yields 34. For example, if  = 14, then the limit is ≈ 00712 via

simulation; if  = 110, then the limit is ≈ 01406. These compare well with

multiplying 00948705678 and 01875465011 respectively by 34.

0.2. Acknowledgements. I am grateful to Peter Winkler, Aaron Smith, Stefan

Steinerberger, Natesh Pillai and Ravi Montenegro for helpful discussions.
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