# Mixing Time of Markov Chains 

Steven Finch

August 4, 2015
We will concentrate on two specific examples, leaving general theory aside. Consider the cycle $Z_{n}$ (integers modulo $n$ ) as our state space. A lazy random walk is a particle that moves left or right, each with probability $1 / 4$, or remains motionless with probability $1 / 2$. Let us assume that the starting point is at 0 . After how many time steps is the distribution of the particle close to uniform?

The transition matrix $Q$, whose $i j^{\text {th }}$ element conveys the odds that the particle is at site $j$ given it was at site $i$ one step earlier, is

$$
Q=\left(\begin{array}{cccccc}
\frac{1}{2} & \frac{1}{4} & 0 & 0 & 0 & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 & 0 & 0 \\
0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 & 0 \\
0 & 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 \\
0 & 0 & 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{4} & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{2}
\end{array}\right)
$$

when $n=6$. If we wish information on the odds over a separation of $t$ (positive integer) steps, then the matrix product $Q^{t}$ is required.

Let $\mu_{t}$ denote the first row of $Q^{t}$ and $\nu$ denote the vector $(1 / n, 1 / n, \ldots, 1 / n)$. Define

$$
d(t)=\frac{1}{2}\left\|\mu_{t}-\nu\right\|_{1},
$$

one-half the $L_{1}$ norm of the vector difference (a sum of absolute values). This is called the total variation distance. Now define

$$
\begin{gathered}
t_{\mathrm{mix}}(\varepsilon)=\min \{t \geq 1: d(t) \leq \varepsilon\}, \\
t_{\mathrm{mix}}=t_{\mathrm{mix}}(1 / 4)
\end{gathered}
$$

the mixing time. For the case $n=6$, we compute

$$
\begin{aligned}
& \mu_{3}=\left(\begin{array}{llllll}
\frac{5}{16} & \frac{15}{64} & \frac{3}{32} & \frac{1}{32} & \frac{3}{32} & \frac{15}{64}
\end{array}\right), \\
& \mu_{4}=\left(\begin{array}{llllll}
\frac{35}{128} & \frac{7}{32} & \frac{29}{256} & \frac{1}{16} & \frac{29}{256} & \frac{7}{32}
\end{array}\right)
\end{aligned}
$$

[^0]and $d(3)=9 / 32>0.28, d(4)=27 / 128<0.22$, therefore $t_{\text {mix }}=4$. Our interest is in the growth of $t_{\text {mix }}$ as $n \rightarrow \infty$. It is known that [1]
$$
c n^{2}<t_{\text {mix }} \leq n^{2}
$$
for some $c>0$; simulation suggests that $t_{\text {mix }} / n^{2}$ approaches a constant $\approx 0.0949$.
A (non-lazy) random walk is a particle that moves left or right, each with probability $1 / 2$. The transition matrix $P$ is
\[

P=\left($$
\begin{array}{cccccccc}
0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0
\end{array}
$$\right)
\]

when $n=7$. For technical reaons, we must restrict the cycle length $n$ to be odd (to ensure aperiodicity). Let $\mu_{t}$ denote the first row of $P^{t}$ and everything else be as before. For the case $n=7$, we compute

$$
\begin{gathered}
\mu_{8}=\left(\begin{array}{lllllll}
\frac{35}{128} & \frac{9}{256} & \frac{7}{32} & \frac{7}{64} & \frac{7}{64} & \frac{7}{32} & \frac{9}{256}
\end{array}\right), \\
\mu_{9}=\left(\begin{array}{lllllll}
\frac{9}{256} & \frac{63}{256} & \frac{37}{512} & \frac{21}{128} & \frac{21}{128} & \frac{37}{512} & \frac{63}{256}
\end{array}\right)
\end{gathered}
$$

and $d(8)=253 / 896>0.28, d(9)=223 / 896<0.24$, therefore $t_{\text {mix }}=9$. Again, the growth rate of $t_{\text {mix }}$ is quadratic in $n$; simulation suggests that $t_{\text {mix }} / n^{2}$ approaches a constant $\approx 0.1898$. We also mention rigorous bounds [2, 3, 4]

$$
\left(\frac{2 n^{2}}{\pi^{2}}-1\right) \ln (2) \leq t_{\text {mix }} \leq \frac{4 n^{2}}{\pi^{2}} \ln (2)
$$

which imply that the ratio falls between 0.14 and 0.28 . Similar bounds could be determined for the lazy case. The non-lazy mixing time is at most twice the lazy mixing time, but may be less.

A remarkable equation for the lazy constant $C \approx 0.0949$ was announced in [5]:

$$
\frac{1}{2} \int_{0}^{1}\left|-1+\sum_{k=-\infty}^{\infty} \frac{1}{\sqrt{C \pi}} \exp \left(-\frac{(x-k)^{2}}{C}\right)\right| d x=\frac{1}{4}
$$

which gives a more accurate estimate $C=0.0948705678 \ldots$. The justification involved passage from discrete ( $n$-cycle) to continuous (circle), Fourier analysis, and reinterpretation of random walks as heat flow. Unfortunately the authors of [5] never
completed their proof - their draft preprint is no longer available online - and we are left wondering if/how the challenging details can be brought together. It appears likely that $2 C$ is the corresponding non-lazy constant, but verification remains open as well.

Setting $\varepsilon=1 / 4$ is, of course, arbitrary. For many Markov chains (not our two examples), there is a more natural choice of threshold. In such scenarios, the variation distance $d(t)$ is fairly large and essentially flat for small $t$, then abruptly changes character and decays exponentially to zero as $t$ increases beyond a certain point. It is believed that such cut-off phenomena are widespread, although they have been rigorously ascertained only sporadically (for example, riffle shuffles of 52 cards $[6,7,8,9])$. How are the group theoretic properties of the state space related to the existence or non-existence of a cut-off? This is a difficult question; we must often settle for the order of magnitude (as a function of $n$ ) of a possible threshold. Only rarely are these results so accurate as to yield tight bounds on the level of a constant.
0.1. Addendum. On the one hand, given any $\varepsilon>0$, the equation for $t_{\text {mix }}(\varepsilon) / n^{2}$ in the limit as $n \rightarrow \infty$ is the same as that for $C$ except $1 / 4$ on the right-hand side is replaced by $\varepsilon$. For example, if $\varepsilon=1 / 10$, then the limit is $0.1875465011 \ldots$.

On the other hand, consider a random walk in which a particle moves left or right, each with probability $1 / 3$, or remains motionless with probability $1 / 3$. What does the heuristic in [5] predict for the value of $t_{\text {mix }}(\varepsilon) / n^{2}$ ? Intuition suggests that the variance of the walk generator is key. The walk with probabilities $\{1 / 4,1 / 2,1 / 4\}$ has variance $1 / 2$; the walk with probabilities $\{1 / 3,1 / 3,1 / 3\}$ has variance $2 / 3$; dividing $1 / 2$ by $2 / 3$ yields $3 / 4$. For example, if $\varepsilon=1 / 4$, then the limit is $\approx 0.0712$ via simulation; if $\varepsilon=1 / 10$, then the limit is $\approx 0.1406$. These compare well with multiplying $0.0948705678 \ldots$ and $0.1875465011 \ldots$ respectively by $3 / 4$.
0.2. Acknowledgements. I am grateful to Peter Winkler, Aaron Smith, Stefan Steinerberger, Natesh Pillai and Ravi Montenegro for helpful discussions.

## References

[1] D. Levin, Y. Peres and E. Wilmer, Markov Chains and Mixing Times, Amer. Math. Soc., 2009, pp. 3-5, 9, 47-48, 53-55, 65, 96; http://pages.uoregon.edu/dlevin/MARKOV/; MR2466937 (2010c:60209).
[2] P. Diaconis, Group Representations in Probability and Statistics, Inst. Math. Stat., 1988, pp. 17-30; http://jdc.math.uwo.ca/M9140a-2012-summer/Diaconis.pdf; MR0964069 (90a:60001).
[3] R. Montenegro, The mixing time of simple random walk on a cycle, http://faculty.uml.edu/rmontenegro/8843/notes/lecture6.pdf.
[4] R. Montenegro, Exponential decay and lower bounding mixing time, http://faculty.uml.edu/rmontenegro/8843/notes/lecture7.pdf.
[5] A. Bloemendal and K. Yang, Mixing time of lazy simple random walk on the $n$-cycle, unpublished note (2010); http://www.individual.utoronto.ca/09yangka/research.html.
[6] D. Aldous and P. Diaconis, Strong uniform times and finite random walks, Adv. Appl. Math. 8 (1987) 69-97; https://statistics.stanford.edu/sites/default/files/EFS NSF 249.pdf; MR0876954 (88d:60175).
[7] P. Diaconis, The cutoff phenomenon in finite Markov chains, Proc. Nat. Acad. Sci. U.S.A. 93 (1996) 1659-1664; http://statweb.stanford.edu/~cgates/PERSI/papers/cutoff.pdf; MR1374011 (97b:60112).
[8] P. Diaconis, The mathematics of mixing things up, J. Stat. Phys. 144 (2011) 445-458; http://statweb.stanford.edu/~ cgates/PERSI/papers/mixing.pdf; MR2826629 (2012j:60207).
[9] L. Saloff-Coste, Random walks on finite groups, Probability on Discrete Structures, ed. H. Kesten, Springer-Verlag, 2004, pp. 263-346; http://statweb.stanford.edu/~ cgates/PERSI/papers/rwfg.pdf; MR2023654 (2004k:60133).


[^0]:    ${ }^{0}$ Copyright © 2015 by Steven R. Finch. All rights reserved.

