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We will concentrate on two specific examples, leaving general theory aside. Con-

sider the cycle  (integers modulo ) as our state space. A lazy random walk is

a particle that moves left or right, each with probability 14, or remains motionless

with probability 12. Let us assume that the starting point is at 0. After how many

time steps is the distribution of the particle close to uniform?

The transition matrix , whose th element conveys the odds that the particle is

at site  given it was at site  one step earlier, is

 =

⎛⎜⎜⎜⎜⎜⎜⎝
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when  = 6. If we wish information on the odds over a separation of  (positive

integer) steps, then the matrix product  is required.

Let  denote the first row of  and  denote the vector (1 1     1).

Define

() =
1

2
k − k1 

one-half the 1 norm of the vector difference (a sum of absolute values). This is

called the total variation distance. Now define

mix() = min { ≥ 1 : () ≤ } 

mix = mix(14)

the mixing time. For the case  = 6, we compute
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and (3) = 932  028, (4) = 27128  022, therefore mix = 4. Our interest is in

the growth of mix as →∞. It is known that [1]
 2  mix ≤ 2

for some   0; simulation suggests that mix
2 approaches a constant ≈ 00949.

A (non-lazy) random walk is a particle that moves left or right, each with

probability 12. The transition matrix  is

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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when  = 7. For technical reaons, we must restrict the cycle length  to be odd

(to ensure aperiodicity). Let  denote the first row of 
 and everything else be as

before. For the case  = 7, we compute
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and (8) = 253896  028, (9) = 223896  024, therefore mix = 9. Again, the

growth rate of mix is quadratic in ; simulation suggests that mix
2 approaches a

constant ≈ 01898. We also mention rigorous bounds [2, 3, 4]µ
22

2
− 1
¶
ln(2) ≤ mix ≤ 4

2

2
ln(2)

which imply that the ratio falls between 014 and 028. Similar bounds could be

determined for the lazy case. The non-lazy mixing time is at most twice the lazy

mixing time, but may be less.

A remarkable equation for the lazy constant  ≈ 00949 was announced in [5]:
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which gives a more accurate estimate  = 00948705678. The justification involved

passage from discrete (-cycle) to continuous (circle), Fourier analysis, and reinter-

pretation of random walks as heat flow. Unfortunately the authors of [5] never



Mixing Time of Markov Chains 3

completed their proof — their draft preprint is no longer available online — and we are

left wondering if/how the challenging details can be brought together. It appears

likely that 2 is the corresponding non-lazy constant, but verification remains open

as well.

Setting  = 14 is, of course, arbitrary. For many Markov chains (not our

two examples), there is a more natural choice of threshold. In such scenarios, the

variation distance () is fairly large and essentially flat for small , then abruptly

changes character and decays exponentially to zero as  increases beyond a certain

point. It is believed that such cut-off phenomena are widespread, although they have

been rigorously ascertained only sporadically (for example, riffle shuffles of 52 cards

[6, 7, 8, 9]). How are the group theoretic properties of the state space related to the

existence or non-existence of a cut-off? This is a difficult question; we must often

settle for the order of magnitude (as a function of ) of a possible threshold. Only

rarely are these results so accurate as to yield tight bounds on the level of a constant.

0.1. Addendum. On the one hand, given any   0, the equation for mix()
2

in the limit as →∞ is the same as that for  except 14 on the right-hand side is

replaced by . For example, if  = 110, then the limit is 01875465011.

On the other hand, consider a random walk in which a particle moves left or right,

each with probability 13, or remains motionless with probability 13. What does

the heuristic in [5] predict for the value of mix()
2? Intuition suggests that the

variance of the walk generator is key. The walk with probabilities {14 12 14} has
variance 12; the walk with probabilities {13 13 13} has variance 23; dividing
12 by 23 yields 34. For example, if  = 14, then the limit is ≈ 00712 via

simulation; if  = 110, then the limit is ≈ 01406. These compare well with

multiplying 00948705678 and 01875465011 respectively by 34.

0.2. Acknowledgements. I am grateful to Peter Winkler, Aaron Smith, Stefan

Steinerberger, Natesh Pillai and Ravi Montenegro for helpful discussions.
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