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In this essay, we presuppose basic knowledge of stochastic processes [1]. Let

{ :  ≥ 0} be a zero mean, unit variance, stationary Gaussian process with twice
differentiable correlation function (| − |) = Cov( ). We wish to study the

distribution of lengths of intervals between zeroes of . There are two cases: the

first in which () is analytic (implying differentiability up to all orders) and the

second in which the third derivative of () possesses a jump discontinuity at  = 0.

Define () to be the probability density associated with the interval length 

between an arbitrary zero 0 and the ( + 1)st later zero +1. In particular, 0()

is the probability density of differences between successive zeroes 0 and 1. We will

focus on the limiting behavior of () as  → 0+.

When () is analytic, it is clear that

() = 1 +
00(0)
2!

 2 +
(4)(0)

4!
 4 +( 6)

since () must be an even function. It is known, in this case, that [2]

() = 
³

1
2
(+2)(+3)−2

´
as  → 0+. Further, the big  coefficient is known. We merely give an example: If

() = exp(− 2) for   0, then

lim
→0+

0()


=
1

2
 lim

→0+
1()

 4
=

√
6

27
52

The more interesting case is when () has a singularity at the origin. If

() = 1− 1
2
 2 + | |3 + (| |3)

then () →  as  → 0+, where   0 is a constant (independent of ).

Longuet-Higgins [3] determined the following bounds

11556  0  1158 01971  1  0198 00491  2  00556
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but it remained for someone else to find a specific process {}, and its corresponding
, for which () could be computed.

Wong [4, 5, 6, 7], building upon McKean [8], examined the process

 =
√
3 exp

³
−
√
3
´ exp(2

√
3)Z

0

 

where  is standard Brownian motion (“standard” meaning that its variance para-

meter is 1). The correlation function for Wong’s process is

() =
3

2
exp

µ
− | |√

3

¶µ
1− 1

3
exp

µ
−2| |√

3

¶¶
and hence  = 2

√
39. It turns out that 0() can be written in terms of complete

elliptic integrals, and a more complicated integral expression applies for (), ≥ 1.
This is sufficient to deduce that

0 =
37

32
= 115625 1 =

47

64
− 108
64

= 01972270670

2 =
121

128
− 81

32
− 27

322
= 00541008518

In fact,

 =
27

42

∞Z
0

3 − 1
3 + 1

 ln()

(2 + 1)+1


which can be evaluated exactly via residue calculus. The limiting behavior of ()

as  → 0+ is thus solved for all . No one has found another stationary Gaussian

process that permits exact analysis as this. Wong [4] also proved that 0() → 0 as

 →∞ and, moreover,

lim
→∞

exp

µ


2
√
3

¶
0() =

√
2
= 

µ
1√
2

¶
=

1

4
√

Γ

µ
1

4

¶2
= 18540746773

where  is Gauss’ lemniscate constant [9] and () denotes the complete elliptic

integral of the first kind. For  ≥ 1, such precise asymptotics for () as  → ∞
remain open. See [10, 11, 12, 13, 14] as well.

We shift attention to counting zeroes in an interval of prescribed length 1. Again,

{} is assumed to be a zero mean, unit variance, stationary Gaussian process with
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twice differentiable correlation function (). Let  denote the number of zeroes of

 per unit time. The expected value of  is [15, 16, 17, 18]

E() =
1



p
−00(0)

and the variance of  is [19, 20, 21, 22, 23, 24, 25]

Var() = E()− E()2 + 2

2

1Z
0

(1− ) () 

where

 () =
¡
1− ()2

¢−1
() (1 +() arctan(())) 

() =
p
1()2() () =

3()p
(1− ()2) 1()2()



1() = (1 + ()) (00(0)− 00()) + 0()2 2() = (1− ()) (00(0) + 00()) + 0()2

3() =
¡
1− ()2

¢
00() + ()0()2

Needless to say, an exact evaluation of Var() is generally impossible. In the case

when () is analytic, we have [26]

lim
→0+

2



µ
1

()
+ arctan (())

¶
= 1

By contrast, in the case when () has a singularity at the origin (as before),

lim
→0+

2



µ
1

()
+ arctan (())

¶
=
2
√
3


+
1

3
= 14359911241

which is an interesting (coincidental?) occurrence of the first Lebesgue constant [27].

For Wong’s process, E() = 1 and [25]

Var() =
4

3
− 1

12
+
3

2

½
arcsin

µ
1

2
exp

µ
− 1√

3

¶¶¾2


No other stationary Gaussian process is known to possess a closed-form expression

for this variance. See also [28, 29, 30, 31, 32, 33, 34].
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0.1. Integrated BrownianMotion. Wong’s process involves an integral of stan-

dard Brownian motion. We briefly examine a simpler integral [35]:

 =

Z
0

 

which is zero mean Gaussian with covariance function

Cov( ) =

Z
0

Z
0

min{ }   =
½

1
6
2(3 − ) if  ≥  ≥ 0
1
6
2(3− ) if  ≥  ≥ 0

One unsolved problem is concerned with the asymptotics of the maximum of || over
the unit interval [36, 37, 38, 39]:

lim
→0+

23 ln

½
P

µ
max
0≤≤1

||  

¶¾
= 

where the constant  is known to satisfy

3

8
≤  ≤ (2)233

8


These are the sharpest known bounds. Another unsolved problem is concerned with

the probability that the integrated Wiener process is currently at its maximum value

[40, 41]:

 = P

µ
 = max

0≤≤


¶


which is known to be independent of . Since integration has the effect of smoothing

, it is reasonable to conjecture for  that  is positive. Two terms of a complicated

infinite series were used in [40] to give an approximation  = 0372, but a more

accurate estimation procedure apparently has not been attempted.

0.2. Random Polynomials. Let () be a random polynomial of degree , with

real coefficients independently chosen from a standard Gaussian distribution. As-

ymptotic properties of the expected number of real zeroes of () were summarized

in [42]; associated probabilities are more difficult to study. The probability that ()

does not have any zeroes in R is −+(1) as →∞ through even integers, where [43]

 = −4 lim
→∞

1


ln

µ
P

µ
sup
0≤≤

 () ≤ 0
¶¶
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and  () is a zero mean, unit variance, stationary Gaussian process with correlation

function () = sech(2). It is known [44, 45, 46] that 05    10 and, via

simulation,  ≈ 076. An exact value for  would be sensational! The statistics of
real zeroes of () turn out to be identical in the four subintervals (−∞−1), [−1 0],
[0 1], (1∞) of R; hence the probability that () does not have zeroes in [0 1] is
−4+(1) ≈ −019 [47, 48]. A related topic is the capture time in the random pursuit
problem for fractional Brownian particles [44, 45, 46].
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