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In this essay, we presuppose basic knowledge of stochastic processes [1]. Let
{X; :t > 0} be a zero mean, unit variance, stationary Gaussian process with twice
differentiable correlation function r(|s — t|) = Cov(Xs, X;). We wish to study the
distribution of lengths of intervals between zeroes of X;. There are two cases: the
first in which r(7) is analytic (implying differentiability up to all orders) and the
second in which the third derivative of r(7) possesses a jump discontinuity at 7 = 0.

Define f,,(7) to be the probability density associated with the interval length 7
between an arbitrary zero to and the (m + 1)* later zero t,,+1. In particular, fo(r)
is the probability density of differences between successive zeroes ¢y and t;. We will
focus on the limiting behavior of f,,(7) as 7 — 0.

When r(7) is analytic, it is clear that

" (4)
rir) =14 D0 0 o)

since (7) must be an even function. It is known, in this case, that [2]
fm(T> -0 <T%(m+2)(m+3)—2)

as 7 — 07. Further, the big O coefficient is known. We merely give an example: If
r(7) = exp(—a7?) for a > 0, then

lim fo(7) _1 , lim hr) _ ﬁofﬂ.
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The more interesting case is when r(7) has a singularity at the origin. If
1
r(r)=1- 57'2 + a|7]* + o(|7]*),

then f,.(7) — Cnha as 7 — 01, where C,, > 0 is a constant (independent of «).
Longuet-Higgins [3] determined the following bounds

1.1556 < Cp < 1.158,  0.1971 < C; < 0.198,  0.0491 < C5 < 0.0556,
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but it remained for someone else to find a specific process { X;}, and its corresponding
«a, for which f,,(7) could be computed.
Wong [4, 5, 6, 7], building upon McKean [8], examined the process

exp(2t/\/§)
X, =V3exp (—\/gt) / Wsds
0

where Wj is standard Brownian motion (“standard” meaning that its variance para-
meter is 1). The correlation function for Wong’s process is

()= Sew (-21) (1= Jewr (-2))

and hence o = 2v/3/9. It turns out that f3(7) can be written in terms of complete
elliptic integrals, and a more complicated integral expression applies for f,,,(7), m > 1.
This is sufficient to deduce that

37 47 108

= — =1.1562 = — — — =0.19722
Co D) 5625, (4 61 6in 0.1972270670...,
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0%~ 330 3 = 00541008518,

In fact,

27 (23 —1 z™In(z)
C, = dr.,
47r2/x3 1@+
0

which can be evaluated exactly via residue calculus. The limiting behavior of f,,(7)
as 7 — 07 is thus solved for all m. No one has found another stationary Gaussian
process that permits exact analysis as this. Wong [4] also proved that fo(7) — 0 as
T — 00 and, moreover,

_ T L 1 1 (1)

where L is Gauss’ lemniscate constant [9] and K(x) denotes the complete elliptic
integral of the first kind. For m > 1, such precise asymptotics for f,,(7) as 7 — oo
remain open. See [10, 11, 12, 13, 14] as well.

We shift attention to counting zeroes in an interval of prescribed length 1. Again,
{X:} is assumed to be a zero mean, unit variance, stationary Gaussian process with
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twice differentiable correlation function r(7). Let N denote the number of zeroes of
X, per unit time. The expected value of N is [15, 16, 17, 18§]

and the variance of N is [19, 20, 21, 22, 23, 24, 25|

1

Var(N) = E(N) — E(N)? + % (1— 1)F(r)dr

where
F(r) = (1 =r(r)?) " G(r) (1 + H(r) arctan(H(7))),

ks(7)
V= r(7)2) ki (7)ka(r)
ko (m) = (L47(7)) (r"(0) = r"(7)) +'(7)% ka(7) = (L= 7(7)) (r"(0) + (7)) +1(7)?,
ks(T) = (1 — T(T)Q) (1) + () ()%

Needless to say, an exact evaluation of Var(NV) is generally impossible. In the case
when 7(7) is analytic, we have [26]

G(7) = Vki(Dka(7),  H(T) =

lim 2 ( HET) + arctan (H(T))> _1

T—=0t T

By contrast, in the case when r(7) has a singularity at the origin (as before),

2 1 23 1
TILI(I)1+ p (H(T) -+ arctan (H(T))) = + 3

= 1.4359911241...

which is an interesting (coincidental?) occurrence of the first Lebesgue constant [27].
For Wong’s process, E(N) = 1/m and [25]

4 1 3 (1 1 ?
Var(N) = = I + — {arcsm (5 exp (_ﬁ>)} :

No other stationary Gaussian process is known to possess a closed-form expression
for this variance. See also [28, 29, 30, 31, 32, 33, 34].
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0.1. Integrated Brownian Motion. Wong’s process involves an integral of stan-
dard Brownian motion. We briefly examine a simpler integral [35]:

t
Zt = /Wsds,
0

which is zero mean Gaussian with covariance function

Lu?(3v — u) ifo>u>0
v(Bu—wv) ifu>wv>0.

[N e

Cov(Zy, Z,) = // min{z,y} dedy = {
00

One unsolved problem is concerned with the asymptotics of the maximum of |Z;| over
the unit interval [36, 37, 38, 39]:

lim £*31n {P (max |Z4] < 6)} = K,
e—0t 0<t<1
where the constant x is known to satisfy

<K< (27r)2/3g.

ol w

These are the sharpest known bounds. Another unsolved problem is concerned with
the probability that the integrated Wiener process is currently at its maximum value
40, 41]:

0<s<t

)\:P(Zt:maXZs),

which is known to be independent of ¢. Since integration has the effect of smoothing
W, it is reasonable to conjecture for Z; that \ is positive. T'wo terms of a complicated
infinite series were used in [40] to give an approximation A = 0.372..., but a more
accurate estimation procedure apparently has not been attempted.

0.2. Random Polynomials. Let ¢(x) be a random polynomial of degree n, with
real coefficients independently chosen from a standard Gaussian distribution. As-
ymptotic properties of the expected number of real zeroes of ¢(x) were summarized
in [42]; associated probabilities are more difficult to study. The probability that g(x)
does not have any zeroes in R is n=*7°() as n — oo through even integers, where [43]

1
b=—41lim =In (P Y(t) <0
TI—IEOTH< (0;1% )< ))
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and Y'(t) is a zero mean, unit variance, stationary Gaussian process with correlation
function r(7) = sech(7/2). It is known [44, 45, 46] that 0.5 < b < 1.0 and, via
simulation, b ~ 0.76. An exact value for b would be sensational! The statistics of
real zeroes of ¢(z) turn out to be identical in the four subintervals (—oo, —1), [—1, 0],
[0,1], (1,00) of R; hence the probability that ¢(z) does not have zeroes in [0, 1] is
n~b/44o() ~ =019 [47, 48]. A related topic is the capture time in the random pursuit
problem for fractional Brownian particles [44, 45, 46].
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