Zero Crossings

Steven Finch

May 19, 2004
In this essay, we presuppose basic knowledge of stochastic processes [1]. Let $\left\{X_{t}: t \geq 0\right\}$ be a zero mean, unit variance, stationary Gaussian process with twice differentiable correlation function $r(|s-t|)=\operatorname{Cov}\left(X_{s}, X_{t}\right)$. We wish to study the distribution of lengths of intervals between zeroes of X_{t}. There are two cases: the first in which $r(\tau)$ is analytic (implying differentiability up to all orders) and the second in which the third derivative of $r(\tau)$ possesses a jump discontinuity at $\tau=0$.

Define $f_{m}(\tau)$ to be the probability density associated with the interval length τ between an arbitrary zero t_{0} and the $(m+1)^{\text {st }}$ later zero t_{m+1}. In particular, $f_{0}(\tau)$ is the probability density of differences between successive zeroes t_{0} and t_{1}. We will focus on the limiting behavior of $f_{m}(\tau)$ as $\tau \rightarrow 0^{+}$.

When $r(\tau)$ is analytic, it is clear that

$$
r(\tau)=1+\frac{r^{\prime \prime}(0)}{2!} \tau^{2}+\frac{r^{(4)}(0)}{4!} \tau^{4}+O\left(\tau^{6}\right)
$$

since $r(\tau)$ must be an even function. It is known, in this case, that [2]

$$
f_{m}(\tau)=O\left(\tau^{\frac{1}{2}(m+2)(m+3)-2}\right)
$$

as $\tau \rightarrow 0^{+}$. Further, the big O coefficient is known. We merely give an example: If $r(\tau)=\exp \left(-\alpha \tau^{2}\right)$ for $\alpha>0$, then

$$
\lim _{\tau \rightarrow 0^{+}} \frac{f_{0}(\tau)}{\tau}=\frac{1}{2} \alpha, \quad \lim _{\tau \rightarrow 0^{+}} \frac{f_{1}(\tau)}{\tau^{4}}=\frac{\sqrt{6}}{27 \pi} \alpha^{5 / 2} .
$$

The more interesting case is when $r(\tau)$ has a singularity at the origin. If

$$
r(\tau)=1-\frac{1}{2} \tau^{2}+\alpha|\tau|^{3}+o\left(|\tau|^{3}\right)
$$

then $f_{m}(\tau) \rightarrow C_{m} \alpha$ as $\tau \rightarrow 0^{+}$, where $C_{m}>0$ is a constant (independent of α). Longuet-Higgins [3] determined the following bounds

$$
1.1556<C_{0}<1.158, \quad 0.1971<C_{1}<0.198, \quad 0.0491<C_{2}<0.0556
$$

[^0]but it remained for someone else to find a specific process $\left\{X_{t}\right\}$, and its corresponding α, for which $f_{m}(\tau)$ could be computed.

Wong $[4,5,6,7]$, building upon McKean [8], examined the process

$$
X_{t}=\sqrt{3} \exp (-\sqrt{3} t) \int_{0}^{\exp (2 t / \sqrt{3})} W_{s} d s
$$

where W_{s} is standard Brownian motion ("standard" meaning that its variance parameter is 1). The correlation function for Wong's process is

$$
r(\tau)=\frac{3}{2} \exp \left(-\frac{|\tau|}{\sqrt{3}}\right)\left(1-\frac{1}{3} \exp \left(-\frac{2|\tau|}{\sqrt{3}}\right)\right)
$$

and hence $\alpha=2 \sqrt{3} / 9$. It turns out that $f_{0}(\tau)$ can be written in terms of complete elliptic integrals, and a more complicated integral expression applies for $f_{m}(\tau), m \geq 1$. This is sufficient to deduce that

$$
\begin{gathered}
C_{0}=\frac{37}{32}=1.15625, \quad C_{1}=\frac{47}{64}-\frac{108}{64 \pi}=0.1972270670 \ldots \\
C_{2}=\frac{121}{128}-\frac{81}{32 \pi}-\frac{27}{32 \pi^{2}}=0.0541008518 \ldots
\end{gathered}
$$

In fact,

$$
C_{m}=\frac{27}{4 \pi^{2}} \int_{0}^{\infty} \frac{x^{3}-1}{x^{3}+1} \frac{x^{m} \ln (x)}{\left(x^{2}+1\right)^{m+1}} d x
$$

which can be evaluated exactly via residue calculus. The limiting behavior of $f_{m}(\tau)$ as $\tau \rightarrow 0^{+}$is thus solved for all m. No one has found another stationary Gaussian process that permits exact analysis as this. Wong [4] also proved that $f_{0}(\tau) \rightarrow 0$ as $\tau \rightarrow \infty$ and, moreover,

$$
\lim _{\tau \rightarrow \infty} \exp \left(\frac{\tau}{2 \sqrt{3}}\right) f_{0}(\tau)=\frac{L}{\sqrt{2}}=K\left(\frac{1}{\sqrt{2}}\right)=\frac{1}{4 \sqrt{\pi}} \Gamma\left(\frac{1}{4}\right)^{2}=1.8540746773 \ldots
$$

where L is Gauss' lemniscate constant [9] and $K(x)$ denotes the complete elliptic integral of the first kind. For $m \geq 1$, such precise asymptotics for $f_{m}(\tau)$ as $\tau \rightarrow \infty$ remain open. See $[10,11,12,13,14]$ as well.

We shift attention to counting zeroes in an interval of prescribed length 1. Again, $\left\{X_{t}\right\}$ is assumed to be a zero mean, unit variance, stationary Gaussian process with
twice differentiable correlation function $r(\tau)$. Let N denote the number of zeroes of X_{t} per unit time. The expected value of N is $[15,16,17,18]$

$$
\mathrm{E}(N)=\frac{1}{\pi} \sqrt{-r^{\prime \prime}(0)}
$$

and the variance of N is $[19,20,21,22,23,24,25]$

$$
\operatorname{Var}(N)=\mathrm{E}(N)-\mathrm{E}(N)^{2}+\frac{2}{\pi^{2}} \int_{0}^{1}(1-\tau) F(\tau) d \tau
$$

where

$$
\begin{gathered}
F(\tau)=\left(1-r(\tau)^{2}\right)^{-1} G(\tau)(1+H(\tau) \arctan (H(\tau))) \\
G(\tau)=\sqrt{k_{1}(\tau) k_{2}(\tau)}, \quad H(\tau)=\frac{k_{3}(\tau)}{\sqrt{\left(1-r(\tau)^{2}\right) k_{1}(\tau) k_{2}(\tau)}}, \\
k_{1}(\tau)=(1+r(\tau))\left(r^{\prime \prime}(0)-r^{\prime \prime}(\tau)\right)+r^{\prime}(\tau)^{2}, \quad k_{2}(\tau)=(1-r(\tau))\left(r^{\prime \prime}(0)+r^{\prime \prime}(\tau)\right)+r^{\prime}(\tau)^{2}, \\
k_{3}(\tau)=\left(1-r(\tau)^{2}\right) r^{\prime \prime}(\tau)+r(\tau) r^{\prime}(\tau)^{2} .
\end{gathered}
$$

Needless to say, an exact evaluation of $\operatorname{Var}(N)$ is generally impossible. In the case when $r(\tau)$ is analytic, we have [26]

$$
\lim _{\tau \rightarrow 0^{+}} \frac{2}{\pi}\left(\frac{1}{H(\tau)}+\arctan (H(\tau))\right)=1
$$

By contrast, in the case when $r(\tau)$ has a singularity at the origin (as before),

$$
\lim _{\tau \rightarrow 0^{+}} \frac{2}{\pi}\left(\frac{1}{H(\tau)}+\arctan (H(\tau))\right)=\frac{2 \sqrt{3}}{\pi}+\frac{1}{3}=1.4359911241 \ldots
$$

which is an interesting (coincidental?) occurrence of the first Lebesgue constant [27]. For Wong's process, $\mathrm{E}(N)=1 / \pi$ and [25]

$$
\operatorname{Var}(N)=\frac{4}{3 \pi}-\frac{1}{12}+\frac{3}{\pi^{2}}\left\{\arcsin \left(\frac{1}{2} \exp \left(-\frac{1}{\sqrt{3}}\right)\right)\right\}^{2}
$$

No other stationary Gaussian process is known to possess a closed-form expression for this variance. See also $[28,29,30,31,32,33,34]$.
0.1. Integrated Brownian Motion. Wong's process involves an integral of standard Brownian motion. We briefly examine a simpler integral [35]:

$$
Z_{t}=\int_{0}^{t} W_{s} d s
$$

which is zero mean Gaussian with covariance function

$$
\operatorname{Cov}\left(Z_{u}, Z_{v}\right)=\int_{0}^{u} \int_{0}^{v} \min \{x, y\} d x d y= \begin{cases}\frac{1}{6} u^{2}(3 v-u) & \text { if } v \geq u \geq 0 \\ \frac{1}{6} v^{2}(3 u-v) & \text { if } u \geq v \geq 0 .\end{cases}
$$

One unsolved problem is concerned with the asymptotics of the maximum of $\left|Z_{t}\right|$ over the unit interval [36, 37, 38, 39]:

$$
\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon^{2 / 3} \ln \left\{\mathrm{P}\left(\max _{0 \leq t \leq 1}\left|Z_{t}\right|<\varepsilon\right)\right\}=\kappa
$$

where the constant κ is known to satisfy

$$
\frac{3}{8} \leq \kappa \leq(2 \pi)^{2 / 3} \frac{3}{8}
$$

These are the sharpest known bounds. Another unsolved problem is concerned with the probability that the integrated Wiener process is currently at its maximum value [40, 41]:

$$
\lambda=\mathrm{P}\left(Z_{t}=\max _{0 \leq s \leq t} Z_{s}\right)
$$

which is known to be independent of t. Since integration has the effect of smoothing W_{s}, it is reasonable to conjecture for Z_{t} that λ is positive. Two terms of a complicated infinite series were used in [40] to give an approximation $\lambda=0.372 \ldots$, but a more accurate estimation procedure apparently has not been attempted.
0.2. Random Polynomials. Let $q(x)$ be a random polynomial of degree n, with real coefficients independently chosen from a standard Gaussian distribution. Asymptotic properties of the expected number of real zeroes of $q(x)$ were summarized in [42]; associated probabilities are more difficult to study. The probability that $q(x)$ does not have any zeroes in \mathbb{R} is $n^{-b+o(1)}$ as $n \rightarrow \infty$ through even integers, where [43]

$$
b=-4 \lim _{T \rightarrow \infty} \frac{1}{T} \ln \left(\mathrm{P}\left(\sup _{0 \leq t \leq T} Y(t) \leq 0\right)\right)
$$

and $Y(t)$ is a zero mean, unit variance, stationary Gaussian process with correlation function $r(\tau)=\operatorname{sech}(\tau / 2)$. It is known [44, 45, 46] that $0.5<b<1.0$ and, via simulation, $b \approx 0.76$. An exact value for b would be sensational! The statistics of real zeroes of $q(x)$ turn out to be identical in the four subintervals $(-\infty,-1),[-1,0]$, $[0,1],(1, \infty)$ of \mathbb{R}; hence the probability that $q(x)$ does not have zeroes in $[0,1]$ is $n^{-b / 4+o(1)} \approx n^{-0.19}[47,48]$. A related topic is the capture time in the random pursuit problem for fractional Brownian particles [44, 45, 46].

References

[1] S. R. Finch, Ornstein-Uhlenbeck process, unpublished note (2004).
[2] M. S. Longuet-Higgins, The distribution of intervals between zeros of a stationary random function, Philos. Trans. Roy. Soc. London Ser. A 254 (1961/1962) 557599; MR0158431 (28 \#1654).
[3] M. S. Longuet-Higgins, Bounding approximations to the distribution of intervals between zeros of a stationary Gaussian process, Proc. Sympos. Time Series Analysis, Brown Univ., ed. M. Rosenblatt, Wiley, 1963, pp. 63-88; MR0148124 (26 \#5633).
[4] E. Wong, Some results concerning the zero-crossings of Gaussian noise, SIAM J. Appl. Math. 14 (1966) 1246-1254; MR0207059 (34 \#6875).
[5] E. Wong, The distribution of intervals between zeros for a stationary Gaussian process, SIAM J. Appl. Math. 18 (1970) 67-73; MR0256456 (41 \#1112).
[6] I. F. Blake and W. C. Lindsey, Level-crossing problems for random processes, IEEE Trans. Inform. Theory IT-19 (1973) 295-315; MR0370729 (51 \#6955).
[7] J. Abrahams, A survey of recent progress on level-crossing problems for random processes, Communications and Networks: A Survey of Recent Advances, ed. I. F. Blake and H. V. Poor, Springer-Verlag, 1986, pp. 6-25.
[8] H. P. McKean, A winding problem for a resonator driven by a white noise, J. Math. Kyoto Univ. 2 (1963) 227-235; MR0156389 (27 \#6312).
[9] S. R. Finch, Gauss' lemniscate constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 420-423.
[10] D. S. Palmer, Properties of random functions, Proc. Cambridge Philos. Soc. 52 (1956) 672-686; corrigenda 53 (1957) 266; MR0080398 (18,241e).
[11] A. J. Rainal, Zero-crossing intervals of Gaussian processes, IEEE Trans. Inform. Theory IT-8 (1962) 372-378; MR0146011 (26 \#3537).
[12] D. Slepian, On the zeros of Gaussian noise, Proc. Sympos. Time Series Analysis, Brown Univ., ed. M. Rosenblatt, Wiley, 1963, pp. 104-115; MR0148128 (26 \#5636).
[13] S. M. Cobb, The distribution of intervals between zero crossings of sine wave plus random noise and allied topics, IEEE Trans. Inform. Theory IT-11 (1965) 220-233; MR0186460 (32 \#3920).
[14] J. Abrahams, The zero-crossing problem for some nonstationary Gaussian processes, IEEE Trans. Inform. Theory IT-28 (1982) 677-678.
[15] S. O. Rice, Mathematical analysis of random noise, Bell System Tech. J. 23 (1944) 282-332; 24 (1945) 46-156; also in Selected Papers on Noise and Stochastic Processes, ed. N. Wax, Dover, 1954, pp. 133-294; MR0010932 (6,89b) and MR0011918 (6,233i).
[16] A. J. Rainal, Origin of Rice's formula, IEEE Trans. Inform. Theory 34 (1988) 1383-1387; MR0993433 (90f:60001).
[17] K. Itô, The expected number of zeros of continuous stationary Gaussian processes, J. Math. Kyoto Univ. 3 (1963/1964) 207-216; MR0166824 (29 \#4097).
[18] N. D. Ylvisarer, The expected number of zeros of a stationary Gaussian process, Annals of Math. Statist. 36 (1965) 1043-1046; MR0177458 (31 \#1721).
[19] H. Steinberg, P. M. Schultheiss, C. A. Wogrin and F. Zwieg, Short-time frequency measurement of narrow-band random signals by means of a zero counting process, J. Appl. Phys. 26 (1955) 195-201.
[20] I. Miller and J. E. Freund, Some results on the analysis of random signals by means of a cut-counting process, J. Appl. Phys. 27 (1958) 1290-1293.
[21] J. S. Bendat, Principles and Applications of Random Noise Theory, Wiley, 1958, pp. 124-128; 385-414; MR0105753 (21 \#4489).
[22] V. A. Volkonskiĭ and Ju. A. Rozanov, Some limit theorems for random functions. II (in Russian), Teor. Verojatnost. i Primenen. 6 (1961) 202-215; Engl. transl. in Theory Probab. Appl. 6 (1961) 186-198; MR0137141 (25 \#597).
[23] M. R. Leadbetter and J. D. Cryer, The variance of the number of zeros of a stationary normal process, Bull. Amer. Math. Soc. 71 (1965) 561-563; MR0174093 (30 \# 4300).
[24] H. Cramér and M. R. Leadbetter, Stationary and Related Stochastic Processes: Sample Function Properties and their Applications, Wiley, 1967, pp. 190-218; MR0217860 (36 \#949).
[25] R. N. Miroshin, On the variance of number of zeros of Gaussian stationary processes, Vestnik St. Petersburg Univ. Math. 34 (2001) 30-35; MR1903454 (2003h:60051).
[26] J. A. McFadden, The axis-crossing intervals of random functions, IEEE Trans. Inform. Theory IT-2 (1956) 146-150; IT-4 (1958) 14-24; MR0098436 (20 \#4895) and MR0098437 (20 \#4896).
[27] S. R. Finch, Lebesgue constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 250-255.
[28] C. W. Helstrom, The distribution of the number of crossings of a Gaussian stochastic process, IEEE Trans. Inform. Theory IT-3 (1957) 232-237.
[29] T. T. Soong, Random Differential Equations in Science and Engineering, Academic Press, 1973, pp. 296-319; MR0451405 (56 \#9691).
[30] R. N. Miroshin, Markov and reciprocal stationary Gaussian processes of second order (in Russian), Teor. Veroyatnost. i Primenen. 24 (1979) 847-853; Engl. transl. in Theory Probab. Appl. 24 (1979) 845-852; MR0550542 (81k:60047).
[31] A. J. Rainal, Passage times of Gaussian noise crossing a time-varying boundary, IEEE Trans. Inform. Theory 36 (1990) 1179-1183.
[32] J. T. Barnett and B. Kedem, Zero-crossing rates of functions of Gaussian processes, IEEE Trans. Inform. Theory 37 (1991) 1188-1194; comment by G. L. Wise, 38 (1992) 213; MR1111822 (92b:60038).
[33] R. Illsley, The moments of the number of exits from a simply connected region, Adv. Appl. Probab. 30 (1998) 167-180; MR1618829 (2000f:60076).
[34] I. Rychlik, On some reliability applications of Rice's formula for the intensity of level crossings, Extremes 3 (2000) 331-348; MR1870462 (2002i:60083).
[35] A. Lachal, Application de la théorie des excursions à l'intégrale du mouvement brownien, Séminaire de Probabilités XXXVII, ed., J. Azema, M. Emery, M. Ledoux and M. Yor, Lect. Notes in Math. 1832, Springer-Verlag, 2003, pp. 109195; MR2053045.
[36] D. Khoshnevisan and Z. Shi, Chung's law for integrated Brownian motion, Trans. Amer. Math. Soc. 350 (1998) 4253-4264; MR1443196 (98m:60056).
[37] X. Chen and W. V. Li, Quadratic functionals and small ball probabilities for the m-fold integrated Brownian motion, Annals of Probab. 31 (2003) 1052-1077; MR1964958.
[38] F. Gao, J. Hannig and F. Torcaso, Integrated Brownian motions and exact $L_{2^{-}}$ small balls, Annals of Probab. 31 (2003) 1320-1337; MR1989435.
[39] W. V. Li and Q.-M. Shao, Gaussian processes: Inequalities, small ball probabilities and applications, Stochastic Processes: Theory and Methods, ed. D. N. Shanbhag and C. R. Rao, North-Holland, 2001, pp. 533-597; MR1861734.
[40] M. Goldman, On the first passage of the integrated Wiener process, Annals of Math. Statist. 42 (1971) 2150-2155; MR0297017.
[41] P. Groeneboom, G. Jongbloed and J. A. Wellner, Integrated Brownian motion, conditioned to be positive, Annals of Probab. 27 (1999) 1283-1303; MR1733148 (2000i:60092).
[42] S. R. Finch, Glaisher-Kinkelin constant: GUE hypothesis, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 135-145.
[43] A. Dembo, B. Poonen, Q.-M. Shao and O. Zeitouni, Random polynomials having few or no real zeros, J. Amer. Math. Soc. 15 (2002) 857-892; MR1915821 (2003f:60092).
[44] W. V. Li and Q.-M. Shao, A normal comparison inequality and its applications, Probab. Theory Related Fields 122 (2002) 494-508; MR1902188 (2003b:60034).
[45] W. V. Li and Q.-M. Shao, Lower tail probabilities for Gaussian processes, Annals of Probab. 32 (2004) 216-242; MR2040781 (2005f:60094).
[46] W. V. Li and Q.-M. Shao, Recent developments on lower tail probabilities for Gaussian processes, Cosmos 1 (2005) 95-106; MR2329259.
[47] G. Schehr and S. N. Majumdar, Statistics of the number of zero crossings: from random polynomials to the diffusion equation, Phys. Rev. Lett. 99 (2007) 060603; arXiv:0705.2648.
[48] G. Schehr and S. N. Majumdar, Real roots of random polynomials and zero crossing properties of diffusion equation, J. Stat. Phys. 132 (2008) 235-273; arXiv:0803.4396.

[^0]: ${ }^{0}$ Copyright © 2004 by Steven R. Finch. All rights reserved.

